1 xe chạy từ a đến b dài 100km trên đoạn đường tiếp giáp với b đường hư phải sửa nên xe giảm vận tốc còn 1/5 ban đầu nên đến b muộn 2h so với dự định vào một ngày khác xe cũng chuyển động từ a đến b nhưng đoạn đang hư đã sửa lùi về b 20km vận tốc của xe cũng giảm 1/5 đến b muộn 30p nếu xe ko hư thì đi mất bao lâu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Gọi vận tốc dự định đi quãng đường AB là x ( x>0, km/h )
Thời gian dự định đi quãng đường AB là : t = \(\dfrac{AB}{x}\) = \(\dfrac{100}{x}\) (h)
TH1 : gọi quãng đường bị hỏng là S (km,S>0)
Thời gian đi quãng đường bị hỏng là : t2 = \(\dfrac{S}{\dfrac{x}{5}}\) =\(\dfrac{5S}{x}\) (h)
Thời gian đi quãng đường còn lại là : t3 = \(\dfrac{100-S}{x}\) (h)
Theo đề bài ta có phương trình :
t2 + t3 = t + t2
<=> \(\dfrac{5S}{x}\) + \(\dfrac{100-S}{x}\) = \(\dfrac{100}{x}\) +2
<=> 5S + 100-S - 100 -2x = 0
=> 4S - 2x = 0 (1)
TH2 : thời gian đi quãng đường đã được sửa chữa là : t1 = \(\dfrac{L}{x}\) =\(\dfrac{20}{x}\) (h)
thời gian đi quãng đường bị hỏng còn lại là : t2 = \(\dfrac{S-20}{\dfrac{x}{5}}\) =\(\dfrac{5.\left(S-20\right)}{x}\) (h)
thời gian đi quãng đường k bị hỏng là : t3 = \(\dfrac{100-S}{x}\) (h)
theo đề bài ta có phương trình :
t1 + t2 + t3 = t + 0,5
<=> \(\dfrac{20}{x}\) + \(\dfrac{5.\left(S-20\right)}{x}\) + \(\dfrac{100-S}{x}\) = \(\dfrac{100}{x}\) + 0,5
=> 20 + 5.(S-20) + 100-S - 100 - 0.5x = 0
=> 4S - 0,5x = 80 (2)
* từ (1) và (2) ta có hpt :
4S - 2x =0
4S - 0,5x = 80
giải hệ ta đc : S = \(\dfrac{80}{3}\) ( km ), x = \(\dfrac{160}{3}\) ( km/h )
thời gian xe chạy từ thành phố A đến thành phố B khi đường không phải sửa chữa là : t = \(\dfrac{AB}{x}\) = \(\dfrac{100}{\dfrac{80}{3}}\) = 3,75 ( h )
Vậy xe chạy từ thành phố A đến thành phố B mất 3,75 h khi đường k phải sửa chữa
gọi vận tốc dự định đi hết quãng đg AB là x (km/h) , x >0.
suy ra tg dự định đi hết quãng đg AB là 100/x ( h)
1/3 quãng đg đầu xe đi hết : 100x/3 (h)
2/3 quãng đg sau xe đi với vận tốc (x + 10) km/h hết 200(x+10)/3 (h)
theo bài ra ta có pt :
\(\frac{100}{x}-\frac{1}{6}=\frac{100}{3x}+0,5+\frac{200}{3\left(x+10\right)}\)
gpt ta tìm x
12 phút = 12/60 (giờ)=0,2 (giờ)
Gọi vận tốc ban đầu của xe là \(x\)(km/h), vận tốc đi trên đoạn đường xấu là \(x-10\) (km/h). (ĐK x>10)
Đoạn đường xấu là 1/4 quãng đường AB và băng \(240:4=60\) (km).
Theo bài ra ta có: \(\frac{60}{x-10}-\frac{60}{x}=0,2\)
=> \(0,2x^2-2x-600=0\)
=> \(x=60\) hoặc \(x=-50\)(loại)
Vận tốc ban đầu là 60km, vận tốc trên đoạn đường xấu là 60-10 = 50km/h
Lời giải:
Đổi 32 phút thành $\frac{8}{15}$ giờ
Theo dự định, xe đi từ A-B hết số giờ là: $11-8=3$ (giờ)
Vận tốc dự định: $75:3=25$ (km/h)
Vận tốc khi xe đi tiếp sau khi sửa xong: $25.0,6=15$ (km/h)
Vì xe đến B chậm hơn dự định 2 giờ, kết hợp với mất $32$ phút sửa xe nên thời gian thực tế khi đi đến $B$ là:
$3+2-\frac{8}{15}=\frac{67}{15}$ giờ
Giả sử xe đi được $a$ giờ thì hỏng. Điều này tức là xe đi quãng đường AB như sau: Đi với vận tốc 25 km/h trong a giờ, đi với vận tốc 15 km/h trong $\frac{67}{15}-a$ giờ. Như vậy:
$25.a+15(\frac{67}{15}-a)=AB=75$
$10a+67=75$
$a=0,8$ (giờ) = 48 phút
Vậy xe hỏng lúc: 8h +48 phút = 8h48 phút
Chỗ hỏng xe cách A số km là: $0,8.25=20$ (km)