Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc với AB tại H. Đặt MH = x. Khi M chuyển động thì x thay đổi, do đó tích AH.BH cũng thay đổi theo. Kí hiệu tích AH.BH bởi P(x). Hỏi P(x) có phải là một hàm số của biến số x hay không? Viết công thức biểu thị hàm số này..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = AH và BD = BH
Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH
Suy ra: AC + BD = AH + BH = AB không đổi
a/
Ta có \(\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)
Xét tg vuông AMB có
\(MH^2=AH.BH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền = tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow BH=\dfrac{MH^2}{AH}=\dfrac{4^2}{2}=8cm\)
\(\Rightarrow AB=AH+BH=2+8=10cm\)
\(MA^2=AH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow MA=\sqrt{AH.AB}=\sqrt{2.10}=2\sqrt{5}cm\)
\(MB^2=BH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow MB=\sqrt{BH.AB}=\sqrt{8.10}=4\sqrt{5}cm\)
b/ Không rõ bạn hỏi biểu thức nào?
c/
Ta có \(OD\perp AM\) (2 tiếp tuyến cùng xuất phát từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)
Xét tg vuông AIO
Gọi K là trung điểm của AO => AK=OK
\(\Rightarrow IK=AK=OK=\dfrac{1}{2}AO\) không đổi (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
A; O cố định => K cố định; IK không đổi => khi M di chuyển trên nửa (O) => I chạy trên nửa đường tròn tâm K
Với mỗi giá trị của x ta có một giá trị xác định của P(x).
Vậy P(x) là một hàm số.
P(x) = x 2