Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB là tam giác đều nằm trong mặt phẳng tạo với đáy một góc 600. Tính thể tích khối chóp S.ABCD
A. a 3 4
B. 3 a 3 4
C. a 3 3 6
D. a 3 3 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A
Gọi H là trung điểm A B .
Ta có S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .
Khi đó: V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .
Đáp án B.
Gọi I là trung điểm của A B ⇒ S I ⊥ A B ⇒ S I ⊥ ( A B C D ) .
Tam giác SAB đều cạnh a ⇒ S I = a 3 2 . Diện tích hình vuông ABCD là S A B C D = a 2 .
Vậy thể tích cần tính là V S . A B C D = 1 3 . S I . S A B C D = a 2 3 . a 3 2 = a 3 3 6 .
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{1}{3}SH.AB^2=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.2a^2=\dfrac{a^3\sqrt{6}}{3}\)
Đáp án D
Gọi H là trung điểm AB, do tam giác SAB đều nên SA ⊥ AB. Mặt khác mặt phẳng (SAB) vuông góc với mặt đáy nên SH là đường cao của chóp.
Ta có h = S H = a 3 2 , S A B C D = a 2
Vậy V = 1 3 . a 3 2 . a 2 = a 3 3 6
Đáp án A
Trong (SAB) kẻ S H ⊥ A B . Ta có ( S A B ) ⊥ ( A B C D ) ( S A B ) ∩ ( A B C D ) = A B ⇒ S H ⊥ ( A B C D ) S H ⊂ ( S A B ) , S H ⊥ A B .
Vậy V S . A B C D = 1 3 S A B C D . S H = 1 3 . a 2 . a 3 2 = a 3 3 6 .
Đáp án A
Phương pháp giải: Dựng chiều cao, xác định góc và độ dài đường cao của khối chóp
Lời giải:
Gọi M là trung điểm của AB
Và H là hình chiếu vuông góc của S trên (ABCD)
Khi đó (SAB); (ABCD) = (SM;MH) = SMH = 600
△ SMH vuông tại H, có
Vậy thể tích khối chóp S.ABCD là