Cho a/a'+b'/b=1; b/b'+c'/c=1. Chứng minh rằng abc+a'b'c'=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
a) Vì 13, 15,61 chia cho a đều dư 1 => 13;15;61 \(⋮a-1\)
=> a-1 thuộc ƯC(13;15;61)
Mà a lớn nhất => a-1 thuộc ƯCLN(13,15,61)
Mà 13;15;61 là các số nguyên tố cùng nhau => ƯCLN(13;15;61) = 1
=> a-1=1
=>a=2
Vậy a=2.
b) Ta có: 149 : a dư 29 => (149-29) thì chia hết cho a ( a > 29)
235 : a dư 35 => ( 235 - 35) chia hết cho a ( a> 35)
=> a thuộc ƯCLN(120,200) = 40
=> a = 40
Vậy a = 40
c) câu c tương tự câu b
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có: aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)aa′+b′b=1⇔ab+a′b′a′b=1⇔ab+a′b′=a′b⇔abc+a′b′c=a′bc(1)
Lại có: bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)bb′+c′c=1⇔bc+b′c′b′c=1⇔bc+b′c′=b′c⇔a′bc+a′b′c′=a′b′c(2)
Từ (1) và (2) => abc+a′b′c+a′bc+a′b′c′=a′bc+a′b′cabc+a′b′c+a′bc+a′b′c′=a′bc+a′b′c
⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c⇔abc+a′b′c′=a′bc−a′bc+a′b′c−a′b′c
⇔abc+a′b′c′=0(đpcm)
lỗi ảnh rồi ạ:<