Cho hình chóp S.ABCD có đáy là hình vuông, B D = 2 a . Tam giác SAC vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối cầu ngoại tiếp hình chóp S.ABCD là
A. 4 πa 3 3
B. 4 πa 3 3
C. πa 3
D. 4 πa 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi O là trung điểm của AC, theo bài ra ta có SO là trục của đáy (ABCD).
Trong mặt phẳng (SAC), đường trung trực của SA cắt SO tại I, vậy I là tâm mặt cầu ngoại tiếp chóp SABCD.
Tam giác SMI đồng dạng với tam giác SOA suy ra
Gọi M là trung điểm AB, do tam giác SAB vuông tại S nên MS = MA = MB
Gọi H là hình chiếu của S trên AB. Từ giả thiết suy ra
Ta có nên là trục của tam giác SAB, suy ra OA = OB = OS (2)
Từ (1) và (2) ta có OS = OA = OB = OC = OD.
Vậy O là tâm mặt cầu ngoại tiếp khối chóp S.ABCD bán kính
Chọn B.
Chọn A