K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

\(x^2-2\left(m-1\right)x+4m+8< 0\)

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(4m+8\right)\)

\(=4m^2-4m+1-16m+32\)

\(=4m^2-20m+33\)

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m^2-20m+33< =0\\1>0\left(đúng\right)\end{matrix}\right.\)

=>\(4m^2-20m+33< =0\)

=>\(\left(2m-5\right)^2+8< =0\)(vô lý)

=>\(m\in\varnothing\)

Để hệ vô nghiệm thì 2/m+2=3/m+1<>4/3

=>3m+6=2m+2 và 3/m+1<>4/3

=>m=-4 và 3/-3<>4/3(luôn đúng)

=>m=-4

12 tháng 5 2023

`{(2x+3y=4),((m+2)x+(m+1)y=3):}` vô nghiệm

`<=>[m+2]/2=[m+1]/3 ne 3/4`

`<=>{(3m+6=2m+2),(4m+8 ne 6),(4m+4 ne 9):}`

`<=>{(m=-4),(m ne -1/2),(m ne 5/4):}`

`<=>m=-4`

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)

NV
20 tháng 3 2021

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m^2-6m-7\le0\)

\(\Rightarrow-1\le m\le7\)

\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)

12 tháng 11 2021

\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm 

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

12 tháng 11 2021

:V ủa thầy giải đc toán 10

NV
21 tháng 3 2022

BPT đã cho vô nghiệm khi:

\(-x^2+x-m\le0\) nghiệm đúng với mọi x

\(\Leftrightarrow\Delta'=1-4m\le0\)

\(\Rightarrow m\ge\dfrac{1}{4}\)

TH1: m=-1

BPT sẽ là:

-2(-1-1)x-3-3>0

=>4x-6>0

=>x>6/4

=>Loại
TH2: m<>-1

Δ=(2m-2)^2-4(m+1)(3m-3)

=4m^2-8m+4-4(3m^2-3)

=4m^2-8m+4-12m^2+12

=-8m^2-8m+16

Để BPT vô nghiệm thì -8m^2-8m+16<=0 và m+1<0

=>m^2+m-2>=0 và m<-1

=>(m+2)(m-1)>=0 và m<-1

=>(m>=1 hoặc m<=-2) và m<-1

=>m<=-2