Tìm x ∈ ℤ ,biết:
a ) 5 3 + − 14 3 < x < 8 5 + 4 10 ; b ) 5 21 + − 3 7 < x 21 < − 2 7 + 8 21 ;
c ) 1 2 + 1 3 + 1 6 ≤ x ≤ 15 4 + 18 8 ; d ) 11 3 + − 19 6 + − 15 2 ≤ x ≤ 19 12 + − 5 4 + − 10 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(14\times X+X\times26=2520\)
\(X\times\left(14+26\right)=2520\)
\(X\times40=2520\)
\(X=2520:40\)
\(X=63\)
b) \(X\times\dfrac{3}{4}+X\times\dfrac{5}{4}=\dfrac{7}{8}\)
\(X\times\left(\dfrac{3}{4}+\dfrac{5}{4}\right)=\dfrac{7}{8}\)
\(X\times\dfrac{8}{4}=\dfrac{7}{8}\)
\(X\times2=\dfrac{7}{8}\)
\(X=\dfrac{7}{8}:2\)
\(X=\dfrac{7}{16}\)
a. 8 + (x - 9) = 125 - 64
8 + (x - 9) = 61
x - 9 = 53
x = 62
b. 5 x (X + 7) - 10 = 8 x 5
5 x (X + 7) - 10 = 40
5 x (X + 7) = 50
X + 7 = 10
X = 3
a) \(\left(19x+2\cdot5^2\right)\div14=\left(13-8\right)^2-4^2\)
\(\left(19x+2\cdot25\right)\div14=5^2-16\)
\(\left(19x+50\right)\div14=25-16=9\)
\(19x+50=9\cdot14=126\)
\(19x=126-50=76\)
\(x=76\div19=4\)
b) \(2\cdot3^x=10\cdot3^{12}+8\cdot\left(3^3\right)^4\)
\(2\cdot3^x=\left(10+8\right)\cdot3^{12}\)
\(2\cdot3^x=18\cdot3^{12}\)
\(\Rightarrow2\cdot3^x=2\cdot3^2\cdot3^{12}\Rightarrow2\cdot3^x=2\cdot3^{15}\Rightarrow x=15\)
a, \left(19.x+2.5^2\right)\div14=\left(13-8\right)^2-4^2(19.x+2.52)÷14=(13−8)2−42
\left(19.x+2.25\right)\div14=5^2-4^2(19.x+2.25)÷14=52−42
\left(19.x+2.25\right)\div14=25-16(19.x+2.25)÷14=25−16
\left(19.x+50\right)\div14=9(19.x+50)÷14=9
\left(19.x+50\right)=9.14(19.x+50)=9.14
19.x+50=12619.x+50=126
19.x=126-5019.x=126−50
19.x=7619.x=76
\Rightarrow x=76\div19⇒x=76÷19
\Rightarrow x=4⇒x=4
Vậy x = 4
b, 2.3^x=10.3^{12}+8.27^42.3x=10.312+8.274
2.3^x=10.3^{12}+8.\left(3^3\right)^42.3x=10.312+8.(33)4
2.3^x=10.3^{12}+8.3^{12}2.3x=10.312+8.312
2.3^x=\left(10+8\right).3^{12}2.3x=(10+8).312
2.3^x=18.3^{12}2.3x=18.312
2.3^x=2.3^3.3^{12}2.3x=2.33.312
2.3^x=2.3^{15}2.3x=2.315
\Rightarrow x=15⇒x=15
Vậy x = 15
tính trừ bt nha bạn vế thương thì cũng tĩnh ra xong mới tính nha
a, \(x\) + \(\dfrac{1}{4}\) - \(\dfrac{3}{8}\) = \(\dfrac{7}{12}\)
\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{7}{12}\)
\(x\) = \(\dfrac{7}{12}\) + \(\dfrac{1}{8}\)
\(x\) = \(\dfrac{17}{24}\)
nhiều quá :((
\(a,2\left(x-5\right)-3\left(x+7\right)=14\)
\(2x-10-3x-21=14\)
\(-x-31=14\)
\(-x=45\)
\(x=45\)
\(b,5\left(x-6\right)-2\left(x+3\right)=12\)
\(5x-30-2x-6=12\)
\(3x-36==12\)
\(3x=48\)
\(x=16\)
\(c,3\left(x-4\right)-\left(8-x\right)=12\)
\(3x-12-8+x=0\)
\(4x-20=0\)
\(4x=20\)
\(x=5\)
Cố nốt nha bn !
cảm ơn, bn nha:)))
mà hình như bạn TOP 3 trả lời câu hỏi pải ko nhỉ???
\(a,2.\left(x-5\right)-3.\left(x+7\right)=14\)
\(2x-10-3x-21=14\)
\(-x-31=14\)
\(x=-31-14\)
\(x=-45\)
\(b,5.\left(x-6\right)-2\left(x+3\right)=12\)
\(5x-30-2x-6=12\)
\(3x-36=12\)
\(3x=12+36\)
\(3x=48\)
\(x=16\)
\(c,-5.\left(2-x\right)+4.\left(x-3\right)=10.x-15\)
\(-10+5x+4x-12=10x-15\)
\(-6x-22=10x-15\)
\(-6x-10x=-15+22\)
\(-16x=7\)
\(x=-\frac{7}{16}\)
Câu d , e f tương tự nha
\(a.\dfrac{1}{2}:3+x=\dfrac{14}{5}\)
\(\dfrac{1}{6}+x=\dfrac{14}{5}\)
\(=>x=\dfrac{79}{30}\)
\(b.\dfrac{8}{5}:x:\dfrac{7}{4}=\dfrac{11}{6}\)
\(\left(\dfrac{8}{5}\cdot\dfrac{4}{7}\right):x=\dfrac{11}{6}\)
\(\dfrac{32}{35}:x=\dfrac{11}{6}\)
\(x=\dfrac{192}{385}\)
\(c.\dfrac{24}{10}+x:\dfrac{3}{4}=\dfrac{11}{3}\)
\(x:\dfrac{3}{4}=\dfrac{11}{3}-\dfrac{24}{10}\)
\(x:\dfrac{3}{4}=\dfrac{38}{30}\)
\(=>x=\dfrac{19}{20}\)
\(a,\dfrac{1}{2}:3+x=\dfrac{14}{5}\\ \Leftrightarrow x+\dfrac{1}{6}=\dfrac{14}{5}\\ \Leftrightarrow x=\dfrac{79}{30}\\ b,\dfrac{8}{5}:x:\dfrac{7}{4}=\dfrac{11}{6}\\ \Leftrightarrow x=\dfrac{192}{385}\\ c,\dfrac{24}{10}+x:\dfrac{3}{4}=\dfrac{11}{3}\\ \Leftrightarrow\dfrac{4}{3}x=\dfrac{19}{15}\\ \Leftrightarrow x=\dfrac{19}{20}\)
a) Ta có: các số nguyên x thỏa mãn – 5 < x < 0 là các số nằm giữa – 5 và 0 trên trục số. Các số đó là: –4; –3; –2; –1.
b) Các số nguyên x thỏa mãn – 3 < x < 3 là các số nằm giữa – 3 và 3 trên trục số. Các số đó là : – 2; – 1; 0; 1; 2.
a)5/14:x+3/10=1/2
=>5/14:x=1/2-3/10
=>5/14:x=1/5
=>x=5/14:1/5
=>x=25/14
vậy x=15/14
a) – 3 < x < 2 => x ∈ {-2;-1;0;1}
b) − 4 21 < x 21 < 2 21 => x ∈ {-3;-2;-1;0;1}
c) 1 ≤ x ≤ 6 => x ∈ {-3;-2;-1;0;1}
d) -7 ≤ x ≤ -3 => x ∈ {-3;-2;-1;0;1}