tìm x
x+1=6\(-\sqrt{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x+1+2sqrtx<=0`
`<=>x+2sqrtx+1<=0`
`<=>(sqrtx+1)^2<=0`(vô lý)
Vì `sqrtx>=0=>sqrtx+1>=1`
`=>(sqrtx+1)^2>=1>0`
Mà đề bài cho `(sqrtx+1)^2<=0`
Vậy BPT vô nghiệm
1/2x3/2+1/3x4/2+1/4x5/2+1/5x6/2+.......+2/Xx(X+1)=2011/2013
2/2x3+2/3x4+2/4x5+2/5x6+.....+2/Xx(X+1)=2011/2013
2x(1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(x+1)=2011/2013
1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(X+1)=2011/4026
1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.....+ 1/x-1/x+1=2011/4026
1/2-1/x+1=2011/4026
1/x+1=1/2-2011/4026
1/x+1=1/2013
Suy ra x=2012
`x xx 6/7=5/14`
`=>x=5/14:6/7`
`=>x=5/14xx7/6`
`=>x=35/84`
`=>x=5/12`
Vậy `x=5/12`
__
`x:2/3=4/9`
`=>x=4/9xx2/3`
`=>x=8/27`
Vậy `x=8/27`
__
`x-1/4=3/2`
`=>x=3/2+1/4`
`=>x=6/4+1/4`
`=>x=7/4`
Vậy `x=7/4`
__
`x+4/5=8/9`
`=>x=8/9-4/5`
`=>x=40/45-36/45`
`=>x=4/45`
Vậy `x=4/45`
\(x\cdot\dfrac{6}{7}=\dfrac{5}{14}\)
\(x\) \(=\dfrac{5}{14}:\dfrac{6}{7}\)
\(x\) \(=\dfrac{5}{12}\)
\(x:\dfrac{2}{3}=\dfrac{4}{9}\)
\(x\) \(=\dfrac{4}{9}\cdot\dfrac{2}{3}\)
\(x\) \(=\dfrac{8}{27}\)
\(x-\dfrac{1}{4}=\dfrac{3}{2}\)
\(x\) \(=\dfrac{3}{2}+\dfrac{1}{4}\)
\(x\) \(=\dfrac{7}{4}\)
\(x+\dfrac{4}{5}=\dfrac{8}{9}\)
\(x\) \(=\dfrac{8}{9}-\dfrac{4}{5}\)
\(x\) \(=\dfrac{4}{45}\)
a, \(x + 1/6 = -3/8 \)
\(x = -3/8 - 1/6\)
\(x = -13/24\)
Vậy \(x = -13/24\)
b, \(-3/7 - x = 4/5 - 2/3\)
\(-3/7 - x = 2/15\)
\(x = -3/7 - 2/15\)
\(x = -59/105.\)
Vậy \(x = -59/105\)
x+1/6=-3/8
x=-3/8-1/6
x=-13/24
-3/7-x=4/5+-2/3
-3/7-x=2/15
x=-3/7-2/15
x=-59/105
a: ĐKXĐ: \(\left\{{}\begin{matrix}5x+3>=0\\x>=0\end{matrix}\right.\Leftrightarrow x>=0\)
b: Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot4=2\)
Vậy: D(-2;2)
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow6-\sqrt{x+1}-x-1=0\\ \Leftrightarrow5-x=\sqrt{x+1}\\ \Leftrightarrow25-10x+x^2=x+1\left(x\le5\right)\\ \Leftrightarrow x^2-11x+24=0\\ \Leftrightarrow\left(x^2-3x\right)-\left(8x-24\right)=0\\ \Leftrightarrow x\left(x-3\right)-8\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=8\left(ktm\right)\end{matrix}\right.\)
Vậy \(x=3\)