K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

1/2x3/2+1/3x4/2+1/4x5/2+1/5x6/2+.......+2/Xx(X+1)=2011/2013

2/2x3+2/3x4+2/4x5+2/5x6+.....+2/Xx(X+1)=2011/2013

2x(1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(x+1)=2011/2013

1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(X+1)=2011/4026

1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.....+ 1/x-1/x+1=2011/4026

1/2-1/x+1=2011/4026

1/x+1=1/2-2011/4026

1/x+1=1/2013

Suy ra x=2012

30 tháng 9 2016

biết còn hỏi vậy bạn

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Đề có vấn đề. Bạn coi lại.

13 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)

=> \(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{2011}{2013}\)

=> \(1-\frac{2}{x+1}=\frac{2011}{2013}\)

=> \(\frac{2}{x+1}=1-\frac{2011}{2013}=\frac{2}{2013}\)

=> x + 1 = 2013

=> x = 2013 - 1 = 2012

5 tháng 1 2020

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)

=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4016}\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\Rightarrow x+1=2013\Rightarrow x=2012\)

25 tháng 6 2015

Hình như sai đề rồi.

1/1 > 2010/2011 rồi mà!

Nếu không sai đề thì không tìm được x

4 tháng 7 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\frac{1}{x+1}=\frac{1}{2011}\)

\(x+1=2011\)

\(x=2010\)