K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Đáp án B.

Phương pháp giải: Gọi tọa độ điểm, tính khoảng cách và tìm tọa độ tâm thông qua bán kính 

Lời giải: Ta có 

Phương trình mặt phẳng (Oxy): z=0

Khoảng cách từ tâm  I đến mp(Oxy) là 

Theo bài ra, ta có 

21 tháng 2 2017

Đáp án là A

6 tháng 3 2017

Chọn A

Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình  I M = 4 14

27 tháng 10 2018

10 tháng 8 2019

Chọn A

Vì A thuộc  nên A (1+2t;1-t;-1+t).

Vì B thuộc  nên B (-2+3t';-1+t';2+2t').

Thay vào (3) ta được t=1, t'=2 thỏa mãn.

14 tháng 4 2019

Chọn B

Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).

18 tháng 2 2017

Chọn C

Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương 

7 tháng 6 2018

Chọn C

Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương 

5 tháng 10 2019

Chọn C

Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương  u → 2 ; - 1 ; 3 .

20 tháng 9 2019

Đáp án B

Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).

 

3 tháng 6 2019

Chọn A

Gọi I = d ∩ Δ. Do I Δ nên I (2t + 1; t – 1; -t).

từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2 ; 1 ; 0) nên có phương trình