Cho hình vuông ABCD có canh 15 cm. E, F lần lượt là trung điểm của AD, AB. P là giao điểm của BE và DF. Tính diện tích hình ABPD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S(AEB) = S(AED) Mà hai hình này chung S(AFPE) => S(FBP) = S(EPD) S(AFP) = S(FPB) S(APE) = S(EPD) =>S(AFP) = S(FPB)=S(APE) = S(EPD) S(AEB) = 15 x 7,5 : 2 =56,25 cm2 => S(ABPD) =56,25:3 x 4 = 75 cm2
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
-Sửa đề: Tính \(\dfrac{S_{CIF}}{S_{CBE}}\).
-△CBE vuông tại B \(\Rightarrow CE^2=CB^2+BE^2\Rightarrow CE=\sqrt{CB^2+BE^2}=\sqrt{CB^2+\dfrac{1}{4}CB^2}=\dfrac{\sqrt{5}}{2}CB\)
-\(BE=\dfrac{1}{2}AB=\dfrac{1}{2}BC=CF\)\(\Rightarrow\)△CBE=△CFD (c-g-c).
\(\widehat{CIF}=180^0-\widehat{BCE}-\widehat{DFC}=180^0-180^0-\widehat{BCE}-\widehat{BEC}=180^0-\widehat{CBE}=180^0-90^0=90^0\)\(\Rightarrow\)△CIF∼△CBE (g-g).
\(\Rightarrow\dfrac{CI}{CB}=\dfrac{CF}{CE}\)
\(\Rightarrow CI=\dfrac{CB.CF}{CE}=\dfrac{CB.\dfrac{1}{2}CB}{\dfrac{\sqrt{5}}{2}CB}=\dfrac{1}{\sqrt{5}}CB\)
△CIF∼△CBE \(\Rightarrow\dfrac{S_{CIF}}{S_{CBE}}=\left(\dfrac{CI}{CB}\right)^2=\left(\dfrac{\dfrac{1}{\sqrt{5}}CB}{CB}\right)=\dfrac{1}{5}\)
Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a
=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)
=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ
=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF
Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)
Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)
Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)
\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)
S(AEB) = S(AED)
Mà hai hình này chung S(AFPE) => S(FBP) = S(EPD)
S(AFP) = S(FPB)
S(APE) = S(EPD)
=>S(AFP) = S(FPB)=S(APE) = S(EPD)
S(AEB) = 15 x 7,5 : 2 =56,25 cm2
=> S(ABPD) =56,25:3 x 4 = 75 cm2