K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2022

-Sửa đề: Tính \(\dfrac{S_{CIF}}{S_{CBE}}\).

-△CBE vuông tại B \(\Rightarrow CE^2=CB^2+BE^2\Rightarrow CE=\sqrt{CB^2+BE^2}=\sqrt{CB^2+\dfrac{1}{4}CB^2}=\dfrac{\sqrt{5}}{2}CB\)

-\(BE=\dfrac{1}{2}AB=\dfrac{1}{2}BC=CF\)\(\Rightarrow\)△CBE=△CFD (c-g-c).

\(\widehat{CIF}=180^0-\widehat{BCE}-\widehat{DFC}=180^0-180^0-\widehat{BCE}-\widehat{BEC}=180^0-\widehat{CBE}=180^0-90^0=90^0\)\(\Rightarrow\)△CIF∼△CBE (g-g).

\(\Rightarrow\dfrac{CI}{CB}=\dfrac{CF}{CE}\)

\(\Rightarrow CI=\dfrac{CB.CF}{CE}=\dfrac{CB.\dfrac{1}{2}CB}{\dfrac{\sqrt{5}}{2}CB}=\dfrac{1}{\sqrt{5}}CB\)

△CIF∼△CBE \(\Rightarrow\dfrac{S_{CIF}}{S_{CBE}}=\left(\dfrac{CI}{CB}\right)^2=\left(\dfrac{\dfrac{1}{\sqrt{5}}CB}{CB}\right)=\dfrac{1}{5}\)

31 tháng 3 2016

bài của bạn gần giống bài của mình

13 tháng 11 2018

ghen j đồng bào

18 tháng 2 2021

mik mới lớp 5

18 tháng 2 2021

bằng a/e