K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

Đặt biểu thức đã cho là $A$

$\bullet$ Chứng minh $A\vdots 5$

Ta nhớ đến tính chất quen thuộc là: Một số chính phương khi chia cho $5$ có dư là $0,1,4$

Do đó, với $a$ là số nguyên không chia hết cho $5$ thì $a^2$ chia $5$ dư $1$ hoặc $4$

Hay $a^2\equiv \pm 1\pmod 5$

$\Rightarrow a^4\equiv 1\pmod 5\Rightarrow a^4-1\equiv 0\pmod 5$

$\Rightarrow A=(a^4-1)(a^4+15a^2+1)\equiv 0\pmod 5$

Hay $A\vdots 5(*)$

----------------------

Chứng minh $A\vdots 7$

$A=(a^4-1)(a^4+a^2+1)+14a^2(a^4-1)$

$=(a^2+1)(a^6-1)+14a^2(a^4-1)$

Ta nhớ đến tính chất quen thuộc: Một số lập phương khi chia cho $7$ có dư $0,1,6$

Do đó, với $a$ là số không chia hết $7$ thì $a^3$ chia $7$ có thể dư $1,6$

Hay $a^3\equiv \pm 1\pmod 7$

$\Rightarrow a^6\equiv 1\pmod 7\Rightarrow a^6-1\equiv 0\pmod 7$

$\Rightarrow A=(a^2+1)(a^6-1)+14a^2(a^4-1)\equiv 0\pmod 7$

Hay $A\vdots 7(**)$

Từ $(*); (**)\Rightarrow A\vdots 35$

22 tháng 1 2016

a^4-1 = (a-1)(a+1)(a^2+1)

Nếu a chia 5 du 1 suy ra n-1 chia het cho 5

Nêu a chia 5 du 2 suy ra n^2 chia 5 du 4 suy ra n^2+1 chia het cho 5  (dùng đồng dư)

tương tự với a chia 5 du 3,4

vay a^4-1 luôn chia het cho 5 

 

CM chia hết 7 là xong 

Nêu a chia 7 du 1 ,5,6 thay nhu tren vao a^4-1 la xong 

Voi a chia 7 du 2,3,4

Neu a chia 7 du 2 thi a^4 chia 7 du 16 ; a^2 chia 7 du 4<=>15a^2 chia 7 du 60

suy ra a^4+15a^2+1 chia 7 du 16+60+1=77 chia het cho 7

Neu a chia 7 du 3, 4 tươ]ng tu

 

 

 

 

22 tháng 1 2016

Ta có: a không chia hết cho 5

=> a chia 5 dư 1;2;3 hoặc 4

=>a4 chia 5 dư 1                    (tính chất)

=>a4-1 chia hết cho 5

Phần sau làm tương tự

21 tháng 12 2019

a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

\(a,a+1\) là 2 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)

\(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)

\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)

b, \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=a\left[2a-3-2\left(a+1\right)\right]\)

\(=-5a\) chia hết cho \(5\left(đpcm\right)\)

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=>