Tìm số hạng không chứa x trong khai triển x 2 - 2 x 15
A . 2 7 . C 15 7
B . 2 10 . C 15 10
C . - 2 10 . C 15 10
D . - 2 7 . C 15 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C^1_n+C^2_n=15\)
=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)
=>\(n+\dfrac{n^2-n}{2}=15\)
=>2n+n^2-n=30
=>n^2+n-30=0
=>n=5
=>(x+2/x^4)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)
SỐ hạng ko chứa x tương ứng với 5-5k=0
=>k=1
=>Số hạng đó là 5*2=10
a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)
Số hạng ko chứa x tương ứng với 10-2k=0
=>k=5
=>SH đó là 8064
b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)
Số hạng ko chứa x tương ứng với 6-3k=0
=>k=2
=>Số hạng đó là 60
c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)
\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)
SH chứa x^10 tương ứng với 15-5k=10
=>k=1
=>Hệ số là -810
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi
\(C^1_n+C^2_n=15\) (Điều kiện: \(n\ge2\))
\(\Leftrightarrow n+\dfrac{n!}{2!\left(n-2\right)!}=15\)
\(\Leftrightarrow n+\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}=15\)
\(\Leftrightarrow n+\dfrac{n\left(n-1\right)}{2}=15\)
\(\Leftrightarrow2n+n\left(n-1\right)=30\)
\(\Leftrightarrow2n+n^2-n=30\)
\(\Leftrightarrow n^2+n-30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=5\\n=-6\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{2}{x^4}\right)^5=C^k_5x^{5-k}\left(\dfrac{2}{x^4}\right)^k=C^k_5x^{5-k-4k}.2^k=C^k_5x^{5-5k}.2^k\)
\(ycbt\Leftrightarrow5-5k=0\Leftrightarrow k=1\)
\(\Rightarrow C^1_5.2^1=10\)
Vậy số hạng không chứa \(x\) trong khai triển là \(10\).
tìm số hạng chứa x\(^{15}\) trong khai triển : (2x\(^3\) - \(\dfrac{1}{4x^2}\))\(^{40}\) (x\(\ne\)0)
Khai triển \(\left(2x^3-\dfrac{1}{4}x^{-2}\right)^{40}\) có số hạng tổng quát:
\(C_{40}^k\left(2x^3\right)^k\left(\dfrac{1}{4}\right)^{40-k}.\left(x^{-2}\right)^{40-k}=C_{40}^k2^k.4^{k-40}.x^{5k-80}\)
Số hạng chứa\(x^{15}\Rightarrow5k-80=15\Leftrightarrow k=19\)
Số hạng đó là: \(C_{40}^{19}2^{19}.4^{-21}x^{15}=C_{40}^{19}.\dfrac{1}{2^{23}}.x^{15}\)
\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)
Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)
\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)
\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)
Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)
\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)
\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)
Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)
Hệ số: \(C_6^42^4\left(-1\right)^2=240\)
Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)
Số hạng chứa \(x^5\Leftrightarrow k=5\)
Hệ số của số hạng đó là: \(C_7^5.2^2=...\)
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
Chọn B
Ta có
Số hạng không chứa x tương ứng với 30 - 3k = 0 => k = 10
Khi đó số hạng cần tìm là 2 10 . C 15 10 .