cho tam giác abc vuông tại a, đường cao ad, f là điểm đối xứng với d qua a, e là hình chiếu của c trên đường thẳng bf, ce cắt ad tại i. cmr
a, tam giác cai đồng dạng với tam giác cea
b, i là trung điểm của ad
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AD là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BD\cdot BC\\AC^2=CD\cdot BC\end{matrix}\right.\Leftrightarrow AB^2\cdot DC=AC^2\cdot BD\)
Lời giải:
a. Áp dụng HTL trong tam giác vuông:
$AB^2=BD.BC$
$AC^2=CD.CB$
$\Rightarrow \frac{AB^2}{AC^2}=\frac{BD}{CD}$
$\Rightarrow AB^2.CD=AC^2.BD$ (đpcm)
b.
Tứ giác $BEAC$ có $\widehat{BEC}=\widehat{BAC}=90^0$ và cùng nhìn cạnh $BC$ nên $BEAC$ là tứ giác nội tiếp
$\Rightarrow \widehat{AEC}=\widehat{ABC}=\widehat{IAC}$
Xét tam giác $CAI$ và $CEA$
$\widehat{C}$ chung
$\widehat{AEC}=\widehat{IAC}$ (cmt)
$\Rightarrow \triangle CAI\sim \triangle CEA$ (g.g)
c.
$\widehat{F_1}=90^0-\widehat{EIF}=90^0-\widehat{DIC}=\widehat{C_1}$
$\Rightarrow \triangle BFD\sim \triangle ICD$ (g.g)
$\Rightarrow \frac{BD}{ID}=\frac{FD}{CD}$
$\Rightarrow BD.CD=ID.FD$
Mà $BD.CD=AD^2$ (HTL trong tam giác vuông)
$\Rightarrow AD^2=ID.FD$
$\Rightarrow \frac{ID}{AD}=\frac{AD}{FD}=\frac{1}{2}$
$\Rightarrow I$ là trung điểm $AD$
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi
a/
Ta có A và E cùng nhìn BC dưới 1 góc vuông => ACBE là tứ giác nội tiếp đường tròn đường kính BC
\(\Rightarrow\widehat{AEC}=\widehat{ABC}\) (góc nội tiếp cùng chắn cung AC) (1)
Xét tg vuông ABC có \(\widehat{ABC}+\widehat{ACB}=90^o\)
Xét tg vuông ACD có \(\widehat{CAD}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{CAD}\) (cùng phụ với \(\widehat{ACB}\)) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AEC}=\widehat{CAD}\)
Xét \(\Delta CAI\) và \(\Delta CEA\) có
\(\widehat{AEC}=\widehat{CAD};\widehat{ACE}\) chung \(\Rightarrow\Delta CAI\) đồng dạng với \(\Delta CAE\) (g.g.g)
b/