K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

Đáp án A

Ký hiệu B là biến cố lấy được số tự nhiên A thỏa mãn yêu cầu bài toán.

Ta có 3N = A <=> N = log3A

Để N là số tự nhiên thì A = 3m (m  ∈ N)

Những số A dạng có 4 chữ số gồm 37 = 2187 và 38 = 6561

26 tháng 5 2018

Đáp án là A

26 tháng 12 2019

3 tháng 3 2017

Chọn B

Số phần tử của không gian mẫu 

Gọi biến cố A” Chọn được một số thỏa mãn ”.

   nên trong các chữ số sẽ không có số 0.

TH1: Số được chọn có  chữ số giống nhau có 9 số.

TH2: Số được chọn tạo bới hai chữ số khác nhau.

Số cách chọn ra 2 chữ số khác nhau từ 9 chữ số trên là: C 9 2 .

Mỗi bộ 2 chữ số được chọn tạo ra 2 số thỏa mãn yêu cầu.

Vậy có 2. C 9 2  số thỏa mãn.

TH3: Số được chọn tạo bởi ba chữ số khác nhau.

Số cách chọn ra 3 chữ số khác nhau từ 9 chữ số trên là: C 9 3 .

Mỗi bộ 3 chữ số được chọn chỉ tạo ra một số thỏa mãn yêu cầu.

Vậy có  C 9 3  số thỏa mãn.

Vậy

Xác suất của biến cố A là: .

1 tháng 1 2020

25 tháng 9 2019

10 tháng 10 2019

Chọn đáp án B

Phương pháp

Chia các TH sau:

TH1: a<b<c.

TH2: a=b<c.

TH3: a<b=c.

TH4: a=b=c.

Cách giải

Gọi số tự nhiên có 3 chữ số là a b c ¯  (0≤a,b,c≤9, a≠0).

=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900

Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.

TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3  số thỏa mãn.

TH2: a=b<c, có  C 9 2  số thỏa mãn.

TH3: a<b=c có  C 9 2  số thỏa mãn.

TH4: a=b=c có 9 số thỏa mãn.

⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165

Vậy P ( A ) = 11 60 .

22 tháng 7 2017

Chọn A

Gọi số tự nhiên có bốn chữ số thỏa mãn yêu cầu bài toán là 

Số phần tử của không gian mẫu là 

Gọi biến cố A ‘‘Số được chọn lớn hơn số 6700’’.

Ta các TH sau:

TH1:  có 1 cách chọn.

có 3 cách chọn.

+ Các chữ số c,d được chọn từ 8 chữ số còn lại có sắp thứ tự và số cách chọn là  A 8 2

Số cách để chọn ở trường hợp 1 là: 3. A 8 2

TH2 : có 3 cách chọn. Khi đó: b,c,d có A 9 3  cách chọn.

Số cách để chọn ở trường hợp 1 là: 3. A 9 3

Như vậy, ta được n(A) = 3. A 8 2  + 3. A 9 3 = 1680

Suy ra 

7 tháng 2 2019