Chứng minh:
a) Biểu thức 9 c 2 + 6c + 3 luôn dương với mọi c;
b) Biểu thức 14m – 6 m 2 – 13 luôn âm với mọi m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)
\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)
\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)
\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)
hay \(F\) luôn dương với mọi \(x;y\).
\(Toru\)
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
\(4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow4\left(x-\dfrac{1}{2}\right)^2+2>0\) với mọi x
\(\Rightarrow dpcm\)
\(A=4x^2-4x+3=4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
a) Ta có: 9 c 2 – 6c + 3 = ( 3 c – 1 ) 2 + 2 > 0 "m.
b) Tương tự.