Cho A O B ^ = 90 0 . Trong A O B ^ vẽ các tia OC, OD sao cho A O C ^ = B O D ^ = 60 0
a. Tính số đo các góc: A O D ^ , D O C ^ , C O B ^
b. Trên nửa mặt phẳng có bờ là đường thẳng OA và chứa tia OB ta vẽ tia OE sao cho OB là tia phân giác của D O E ^ . Chứng tỏ rằng O C ⊥ O E .
a) Vì tia OD nằm trong A O B ^ nên tia OD nằm giữa hai tia OA và OB do đó
A O D ^ + B O D ^ = A O B ^
Suy ra: A O D ^ = A O B ^ − B O D ^ = 90 0 − 60 0 = 30 0
Tương tự ta cũng có C O B ^ = 30 0 , D O C ^ = 30 0 .
b) Vì là tia phân giác của D O E ^ nên D O B ^ = B O E ^ = 60 0 .
Vì OB nằm giữa hai tia OC và OE và C O B ^ = 30 0 nên ta có
E O C ^ = E O B ^ + B O C ^ = 60 0 + 30 0 = 90 0
Vậy O C ⊥ O E