Chứng minh rằng:
Nếu a2 = bc (với a ≠ b và a ≠ c) thì a + b a - b = c + a c - a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT BSC:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)
\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)
\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Đẳng thức xảy ra khi \(a=b=c\)
4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)
Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)
⇒ Cộng lại vế với vế :
4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)
Ta có: a chia hết cho b
nên a=bk
hay \(b=\dfrac{a}{k}\)
Ta có: b chia hết cho c
nên b=cx
\(\Leftrightarrow cx=\dfrac{a}{k}\)
hay a=cxk
Vậy: a chia hết cho c
\(a⋮b\Rightarrow a=b.n\left(n\in Z\right)\left(1\right)\)
\(b⋮c\Rightarrow b=c.m\left(m\in Z\right)\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow a=c.m.n⋮c\)( do \(m,n\in Z\))
Lời giải:
Đặt $a-b=x; b-c=y; c-a=z$ thì $x+y+z=0$
Khi đó. Điều kiện đề tương đương với:
$x^2+y^2+z^2=(x-y)^2+(y-z)^2+(z-x)^2$
$\Leftrightarrow x^2+y^2+z^2=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2$
$\Leftrightarrow x^2+y^2+z^2=2(x^2+y^2+z^2)-2(xy+yz+xz)$
$\Leftrightarrow 2(xy+yz+xz)=x^2+y^2+z^2$
$\Leftrightarrow 2(x^2+y^2+z^2)=x^2+y^2+z^2+2(xy+yz+xz)=(x+y+z)^2=0$
$\Rightarrow x=y=z=0$
$\Rightarrow a-b=b-c=c-a=0$
$\Rightarrow a=b=c$
Nếu : a + b + c = 0
=> a + b = -c
=> (a + b)3 = -c3
=>a3+b3+c3 =-3ab(a + b)=3abc
xét hiệu: 4.(9a+b+4c)-(3a+4b+5c)
rùi làm như bình thường ngọc nhé,hà phg đây
\(a^2=bc\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Ta có:
Theo tính chất dãy tỉ số bằng nhau ta có: