Biện luận theo k số nghiệm của phương trình: x + 1 2 .(2 − x) = k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình đã cho tương đương với phương trình:
2(x − k) = ( x - 1 ) 2 hoặc 2(x − k) = - ( x - 1 ) 2
Ta vẽ đồ thị của hai hàm số: y = − x 2 + 4x – 1 và y = x 2 + 1
Từ đồ thị ta suy ra:
• 2k > 3 : phương trình có hai nghiệm;
• 2k = 3 : phương trình có ba nghiệm;
• 2 < 2k < 3 : phương trình có bốn nghiệm;
• 2k = 2 : phương trình có ba nghiệm;
• 1 < 2k < 2 : phương trình có bốn nghiệm ;
• 2k = 1 : phương trình có ba nghiệm ;
• 2k < 1 : phương trình có hai nghiệm.
(1) : phương trình có bốn nghiệm;
(2): phương trình có ba nghiệm ;
(3): phương trình có hai nghiệm.
b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = (x + 1)2.(2 − x).
y = − x 3 + 3x + 2 ⇒ y′ = −3 x 2 + 3
y′=0 ⇔
Bảng biến thiên:
Đồ thị:
Từ đồ thị hàm số ta suy ra:
• k > 4 hoặc k < 0: phương trình có một nghiệm;
• k = 4 hoặc k = 0 : phương trình có hai nghiệm;
• 0 < k < 4: phương trình có ba nghiệm.
Phương trình đã cho tương đương với phương trình:
2(x − k) = x - 1 2 hoặc 2(x − k) = - x - 1 2
Ta vẽ đồ thị của hai hàm số: y = − x 2 + 4x – 1 và y = x 2 + 1
Từ đồ thị ta suy ra:
• 2k > 3 : phương trình có hai nghiệm;
• 2k = 3 : phương trình có ba nghiệm;
• 2 < 2k < 3 : phương trình có bốn nghiệm;
• 2k = 2 : phương trình có ba nghiệm;
• 1 < 2k < 2 : phương trình có bốn nghiệm ;
• 2k = 1 : phương trình có ba nghiệm ;
• 2k < 1 : phương trình có hai nghiệm.
(1) : phương trình có bốn nghiệm;
(2): phương trình có ba nghiệm ;
(3): phương trình có hai nghiệm.
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x + 1 2 .(2 − x).
y = − x 3 + 3x + 2 ⇒ y′ = −3 x 2 + 3
y′=0 ⇔
Bảng biến thiên:
Đồ thị:
Từ đồ thị hàm số ta suy ra:
• k > 4 hoặc k < 0: phương trình có một nghiệm;
• k = 4 hoặc k = 0 : phương trình có hai nghiệm;
• 0 < k < 4: phương trình có ba nghiệm.