K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Tập xác định D = R; ∀ x ∈ D có -x ∈ D và

f ( - x )   =   3 . ( - x ) 2   -   1   =   3 x 2   -   1   =   f ( x )

    Vậy hàm số đã cho là hàm số chẵn.

8 tháng 10 2021

không chẵn không lẻ nhé

NV
8 tháng 10 2021

Hàm xác định trên R

\(f\left(-x\right)=0=f\left(x\right)\Rightarrow\)  hàm chẵn

\(f\left(-x\right)=0=-0=-f\left(x\right)\Rightarrow\) hàm lẻ

\(\Rightarrow\) Hàm vừa chẵn vừa lẻ

30 tháng 6 2021

`y=f(x)=tan^7 2x .sin5x`

`f(-x)=[tan (-2x)]^7 . sin(-5x)`

`= -tan^7 2x . (-sin5x) = tan^7 2x .sin5x = f(x)`

`=>` Chẵn.

17 tháng 2 2018

y = f(x) = 1/x

TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D

f(-x) = 1/(-x) = -1/x = -f(x)

Vậy y = f(x) = 1/x là hàm số lẻ.

3 tháng 11 2018

Đặt y = f(x) = (x + 2)2.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)

+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

16 tháng 12 2018

Đặt y = f(x) = x2 + x + 1.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)

Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.

24 tháng 10 2021

\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)

\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)

=f(x)

Vậy: f(x) là hàm số chẵn

10 tháng 10 2019

y = √x

TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D

Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.

NV
6 tháng 10 2021

a. \(D=R\)

\(g\left(-x\right)=\sqrt{\left(-x\right)^4-2\left(-x\right)+3}-\sqrt{\left(-x\right)^4+2\left(-x\right)+3}\)

\(=\sqrt{x^4+2x+3}-\sqrt{x^4-2x+3}=-\left(\sqrt{x^4-2x+3}-\sqrt{x^4+2x+3}\right)\)

\(=-g\left(x\right)\)

Hàm lẻ

b.

\(D=R\)

\(h\left(-x\right)=\sqrt[3]{-x+1}-\sqrt[3]{-x-1}=-\sqrt[3]{x-1}+\sqrt[3]{x+1}\)

\(=\sqrt[3]{x+1}-\sqrt[3]{x-1}=h\left(x\right)\)

Hàm chẵn

5 tháng 12 2017

Đặt y = f(x) = |x|.

+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.

+ f(–x) = |–x| = |x| = f(x).

Vậy hàm số y = |x| là hàm số chẵn.