K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

a. \(D=R\)

\(g\left(-x\right)=\sqrt{\left(-x\right)^4-2\left(-x\right)+3}-\sqrt{\left(-x\right)^4+2\left(-x\right)+3}\)

\(=\sqrt{x^4+2x+3}-\sqrt{x^4-2x+3}=-\left(\sqrt{x^4-2x+3}-\sqrt{x^4+2x+3}\right)\)

\(=-g\left(x\right)\)

Hàm lẻ

b.

\(D=R\)

\(h\left(-x\right)=\sqrt[3]{-x+1}-\sqrt[3]{-x-1}=-\sqrt[3]{x-1}+\sqrt[3]{x+1}\)

\(=\sqrt[3]{x+1}-\sqrt[3]{x-1}=h\left(x\right)\)

Hàm chẵn

e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

3 tháng 12 2021

\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)

Vậy hàm số lẻ

\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)

Vậy hàm số chẵn

\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)

Vậy hàm số lẻ

\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)

Vậy hàm số lẻ

28 tháng 6 2021

a, Ta có : \(f\left(x\right)=\left[{}\begin{matrix}x.x=x^2\\x\left(-x\right)=-x^2\end{matrix}\right.\)

=> Hàm f(x) là hàm chẵn .

b, Ta có : \(f\left(x\right)-f\left(-x\right)=\dfrac{\sqrt{1-x^2}}{x^3+x}+\dfrac{\sqrt{1-x^2}}{x^3+x}\ne0\)

\(\Rightarrow f\left(x\right)\ne f\left(-x\right)\)

=> Hàm f(x) là hàm lẻ .

28 tháng 6 2021

Ủa gì ngộ vậy,ai làm kiểu này bao giờ?

a)\(D=R\)\(\Rightarrow\forall x\in D\) thì \(-x\in D\)

Có \(f\left(-x\right)=-x\left|-x\right|=-x\left|x\right|=-f\left(x\right)\)

\(\Rightarrow f\left(x\right)\) là hàm lẻ

b)\(D=R\backslash\left\{0\right\}\)\(\Rightarrow\forall x\in D\) thì \(-x\in D\)

Có \(f\left(-x\right)=\dfrac{\sqrt{1-\left(-x\right)^2}}{\left(-x\right)^3+\left(-x\right)}=-\dfrac{\sqrt{1-x^2}}{x^3+x}=-f\left(x\right)\)

\(\Rightarrow f\left(x\right)\) là hàm lẻ

16 tháng 11 2021

1: \(f\left(-x\right)=\left(-x\right)^2=x^2\)

Vậy: Hàm số này chẵn

11 tháng 10 2021

a: \(f\left(-x\right)=-2\cdot\left(-x\right)^3+3\cdot\left(-x\right)\)

\(=2x^3-3x\)

\(=-\left(-2x^3+3x\right)\)

=-f(x)

Vậy: f(x) là hàm số lẻ

c: TXĐ: D=[-2;2]

Nếu \(x\in D\Leftrightarrow-x\in D\)

\(f\left(-x\right)=\sqrt{6-3\cdot\left(-x\right)}-\sqrt{6+3\cdot\left(-x\right)}\)

\(=\sqrt{6+3x}-\sqrt{6-3x}\)

\(=-f\left(x\right)\)

Vậy: f(x) là hàm số lẻ

11 tháng 10 2021

Còn b,d thì làm sao v ạ.

28 tháng 9 2016

a)TXĐ D=[-2:2]  

\(\forall x\in D\Rightarrow-x\in D\)

f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)

Hàm số đồng biến

Câu b) c) giống rồi tự xử nha

d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)

TXĐ D=R

\(\forall x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)

Hàm số không chẵn không lẻ

 

 
24 tháng 10 2021

\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)

\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)

=f(x)

Vậy: f(x) là hàm số chẵn

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Bình phương hai vế ta được

\(2{x^2} - 3x - 1 = 2x - 3\)

\(\begin{array}{l} \Leftrightarrow 2{x^2} - 5x +2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \(2x - 3 \ge 0\) thì chỉ \(x=2\) thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{2 \right\}\)

b) Bình phương hai vế ta được

\(\begin{array}{l}4{x^2} - 6x - 6 = {x^2} - 6\\ \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)

Thay các giá trị tìm được vào bất phương trình \({x^2} - 6 \ge 0\) thì thấy chỉ có nghiệm \(x = 2\)thỏa mãn.

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

c) \(\sqrt {x + 9}  = 2x - 3\)(*)

Ta có: \(2x - 3 \ge 0 \Leftrightarrow x \ge \frac{3}{2}\)

Bình phương hai vế của (*) ta được:

\(\begin{array}{l}x + 9 = {\left( {2x - 3} \right)^2}\\ \Leftrightarrow 4{x^2} - 12x + 9 = x + 9\\ \Leftrightarrow 4{x^2} - 13x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = \frac{{13}}{4}\left( {TM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{13}}{4}} \right\}\)

d) \(\sqrt { - {x^2} + 4x - 2}  = 2 - x\)(**)

Ta có: \(2 - x \ge 0 \Leftrightarrow x \le 2\)

Bình phương hai vế của (**) ta được:

\(\begin{array}{l} - {x^2} + 4x - 2 = {\left( {2 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 4x - 2 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 8x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = 3\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

12 tháng 12 2020

a, \(y=f\left(x\right)=2x^2+1\)

\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn

b, \(y=f\left(x\right)=5x^3-2x\)

\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ

c, \(y=f\left(x\right)=\sqrt{x-1}\)

ĐK: \(x\ge1\)

\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ

d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)

ĐK: \(x\ne0\)

\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)

\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)

\(\Rightarrow\) Không phải là hàm số chẵn, lẻ

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x =  - 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}{x^2} + 2x - 3 =  - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{4}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn

Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 3 =  - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.

Vậy phương trình vô nghiệm

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 5x - 4 =  - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 3\) hoặc \(x = 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.

Vậy nghiệm của phương trình là x = 2.