K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Chọn C

23 tháng 2 2018

Đấp án C.

3 tháng 10 2017

20 tháng 10 2018

Đáp án A.

Có z . z ' = a a ' − b b ' + a b ' + a ' b i .  

Vậy phần ảo là:  a b ' + b a ' i .

23 tháng 9 2019

Đáp án A.

 .

Vậy phần ảo là (ab'+ba')i.

7 tháng 6 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{xz}{ac}+\frac{yz}{bc}\right)\)

\(=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+bxz+ayz}{abc}\right)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{0}{abc}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2\)mà \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

6 tháng 2 2018

Chọn B.

Ta có: z = ( 2 + i) ( 3 - i) = 6 - 2i + 3i - i= 7 + i

Nên vậy  phần thực bằng a = 7 và phần ảo b = -1.

16 tháng 2 2019

Đáp án D

18 tháng 8 2018

Chọn đáp án D

27 tháng 4 2017

Chọn C.

Theo giả thiết ta có:

⇒ Phần thực a = -2 và phần ảo bằng b = 6.