K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{xz}{ac}+\frac{yz}{bc}\right)\)

\(=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{cxy+bxz+ayz}{abc}\right)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{0}{abc}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2\)mà \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

13 tháng 6 2018

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2abc\left(a+b+c\right)\)

thay \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=0\end{cases}}\)

=>\(a^4+b^4+c^4=14^2-2abc.0=196\)

7 tháng 4 2018

THam khảo tại đây:

Câu hỏi của Vũ khoa - Toán lớp 8 - Học toán với OnlineMath

7 tháng 4 2018

Cách đó k hay

27 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

24 tháng 3 2015

+) Tìm số abc:

Vì abc > 600 và a chẵn nên a = 6 hoặc 8.

- nếu a = 6, ta có a.b.c = 6. 2m.2n = 24.m.n (đặt b = 2m, c = 2n, do b; c chẵn)

do số 6bc chia hết a.b.c nên 6bc chia hết 24.m.n hay 6bc là bội của 24, có thể là 624; 648;672; 698

đối chiếu điều kiện, chỉ có 624 thoả mãn

 - nếu a = 8, ta có a.b.c = 8. 2m.2n = 32.m.n , tương tự như trên số 8bc là bội của 32, có thể là 800; 832; 864; 896

đối chiếu điều kiện, không có số nào thoả mãn

Vậy abc = 624

+) Tìm x, y

     xxyy = (xx)2 + (yy)2

=> 1100. x + 11. y = 121.x2 + 121.y2 (cấu tạo số)

=> 100.x + y = 11x2 + 11y2   =>  x + y = 11.(x2 + y2) - 99.x

Vế phải luôn chia hết cho 11 nên vế trải phải chia hết cho 11, x; y là các chữ số nên x+ y = 11

+) Vậy \(A=\frac{1998\left(6+2+4-1\right)}{1999.11}=\frac{1998.11}{1999.11}=\frac{1998}{1999}\)