Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x^3 + y^3 + 3xy = (x+y)(x^2-xy+y^2) + 3xy = x^2+2xy+y^2=(x+y)^2=1
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
+) Tìm số abc:
Vì abc > 600 và a chẵn nên a = 6 hoặc 8.
- nếu a = 6, ta có a.b.c = 6. 2m.2n = 24.m.n (đặt b = 2m, c = 2n, do b; c chẵn)
do số 6bc chia hết a.b.c nên 6bc chia hết 24.m.n hay 6bc là bội của 24, có thể là 624; 648;672; 698
đối chiếu điều kiện, chỉ có 624 thoả mãn
- nếu a = 8, ta có a.b.c = 8. 2m.2n = 32.m.n , tương tự như trên số 8bc là bội của 32, có thể là 800; 832; 864; 896
đối chiếu điều kiện, không có số nào thoả mãn
Vậy abc = 624
+) Tìm x, y
xxyy = (xx)2 + (yy)2
=> 1100. x + 11. y = 121.x2 + 121.y2 (cấu tạo số)
=> 100.x + y = 11x2 + 11y2 => x + y = 11.(x2 + y2) - 99.x
Vế phải luôn chia hết cho 11 nên vế trải phải chia hết cho 11, x; y là các chữ số nên x+ y = 11
+) Vậy \(A=\frac{1998\left(6+2+4-1\right)}{1999.11}=\frac{1998.11}{1999.11}=\frac{1998}{1999}\)