K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

giúp mình với

21 tháng 10 2017

Dễ mà bn , mình học dạng này òi

15 tháng 4 2016

3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51

3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)

3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)

3/2(1-1/51)

3/2  .    50/51

25/17

15 tháng 4 2016

áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu

VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)

nên = 1/1-1/3+1/3+1/5+...+1/49-1/51

      =1-1/51

      =50/51

1 tháng 2 2016

A=3/(1.3) + 3/(3.5) + 3/(5.7) +.....+ 3/(49.51) 
A=3/2 . [2/(1.3) + 2/(3.5) + 2/(5.7) +.....+ 2/(49.51)] 
A=3/2 . (1/1 - 1/3 + 1/3 - 1/5 +1/5 - 1/7 +.....+ 1/49 -1/51) 
A=3/2 . (1/1 - 1/51) 
A=3/2 . 50/51 
A=25/17. 

giup minh nha 

12 tháng 4 2016
B=3.(1/1.3+1/3.5+1/5.7+...+1/49.51) B=3.(1/1-1/3+1/3-1/5+...+1/49-1/51) B=3.(1-1/51) B=3.50/51 B=50/17
17 tháng 7 2016

                           \(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

                 \(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

                  \(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

                   \(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)

                  \(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)

              Ủng hộ mk nha !!! ^_^

14 tháng 5 2021

25/17 mới đúng

8 tháng 8 2016

3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51

= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )

= 3 x ( 1 - 1/51 )

= 3 x      50/51

=       150/151

8 tháng 8 2016

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

 
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)

2 tháng 1 2018

19333333333333465667

11 tháng 5 2017

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{50}{51}\)

11 tháng 5 2017

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(2A=3\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)

\(2A=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(2A=3\left(1-\frac{1}{51}\right)\)

\(2A=3.\frac{50}{51}\)

\(2A=\frac{50}{17}\Rightarrow A=\frac{25}{17}\)'

18 tháng 6 2020

ta có A=3/1*3+3/3*5+3/5*7+...+3/49*51

=> A=3*1/2*(2/1*3+2/3*5+..+2/49*51)

=> A=3/2*(1-1/3+1/3-1/5+..+1/49-1/51)

=> A=3/2*(1-1/51)

=> A= 3/2* 50/51

=> A= 25/17