K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Đáp án B.

Đặt ln 2 x + 1 = u x d x = d v ⇒ 2 2 x + 1 d x = d u v = x 2 2 ⇒ 1 x + 1 2 d x = d u v = x 2 - 1 / 4 2  

⇒ I = x 2 2 ln 2 x + 1 0 4 - 1 2 ∫ 0 4 x - 1 2 d x = 63 ln 3 4 - 3 ⇒ a + b + b = 70 .

1 tháng 12 2018

7 tháng 5 2018

Chọn C.

Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.

Cách giải:

6 tháng 11 2023

a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)

\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)

b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)

\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)

11 tháng 3 2018

a) Bất phương trình đã cho tương đương với hệ sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (−1;0) ∪ (7/2; + ∞ )

b) Tương tự câu a), tập nghiệm là (1/10; 5)

c) Đặt t = log 2 x , ta có bất phương trình 2 t 3  + 5 t 2  + t – 2 ≥ 0 hay (t + 2)(2 t 2  + t − 1) ≥ 0 có nghiệm −2 ≤ t ≤ −1 hoặc t ≥ 1/2

Suy ra 1/4 ≤ x ≤ 1/2 hoặc x ≥ 2

Vậy tập nghiệm của bất phương trình đã cho là: [1/4; 1/2] ∪ [ 2 ; + ∞ )

d) Bất phương trình đã cho tương đương với hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy tập nghiệm là (ln(2/3); 0] ∪ [ln2; + ∞ )

Cõu 25: a) Biết rằng a, b, c Z . Hỏi 3 số 3a 2 .b.c 3 ; -2a 3 b 5 c; -3a 5 b 2 c 2 có thể cùng âmkhông?Cho hai tích -2a 5 b 2 và 3a 2 b 6 cùng dấu. Tìm dấu của a?Cho a và b trái dấu, 3a 2 b 1980 và -19a 5 b 1890 cùng dấu. Xác định dấu của a và b?b) Cho x Z và E = (1 – x) 4 . (-x). Với điều kiện nào của x thì E = 0; E > 0; E < 0Cõu 26: Chứng minh giá trị biểu thức sau không phụ thuộc vào a(3a + 2).(2a – 1) + (3...
Đọc tiếp

Cõu 25: a) Biết rằng a, b, c Z . Hỏi 3 số 3a 2 .b.c 3 ; -2a 3 b 5 c; -3a 5 b 2 c 2 có thể cùng âm
không?
Cho hai tích -2a 5 b 2 và 3a 2 b 6 cùng dấu. Tìm dấu của a?
Cho a và b trái dấu, 3a 2 b 1980 và -19a 5 b 1890 cùng dấu. Xác định dấu của a và b?
b) Cho x Z và E = (1 – x) 4 . (-x). Với điều kiện nào của x thì E = 0; E > 0; E < 0
Cõu 26: Chứng minh giá trị biểu thức sau không phụ thuộc vào a
(3a + 2).(2a – 1) + (3 – a).(6a + 2) – 17.(a – 1)

Câu 27: Trong 3 số nguyên x, y, z có một số dương, một số âm và một số 0. Em hãy chỉ
rõ mỗi số đó biết:
a) ).(2zyyx

b) y 2 = |x|. (z – x) c) x 8 + y 6 z = y 7

Câu 28: Tìm GTLN hoặc GTNN của:
a) A = 3582)123617)218xCcyxBbx
d) D = 3(3x – 12) 2 – 37 e) D = -21 – 3. 502x

g) G = (x – 3) 2 +

2592x
Cõu 29: Tìm các số nguyên a, b, c, d biết rằng:
a) a + b = - 11
b + c = 3
c + a = - 2

b) a + b + c + d = 1
a + c + d = 2
a + b + d = 3
a + b + c = 4
Cõu 30: Cho x 1 + x 2 + x 3 + x 4 + ................ + x 49 + x 50 + x 51 = 0
và x 1 + x 2 = x 3 + x 4 = x 5 + x 6 = ..... = x 47 + x 48 = x 49 + x 50 = x 50 + x 51 = 1. Tính x 50?
Câu 31: a) Cho 2017 số nguyên trong đó 7 số bất kỳ luôn có tổng âm. Hỏi tổng của 2017
số đó là âm hay dơng?
b) Cho 2017 số nguyên trong đó 7 số bất kỳ luôn có tích âm. Hỏi tích của 2017 số đó là
âm hay dương? Mỗi số nguyên đó là âm hay dương?
Câu 32: Cho n số nguyên a 1 ; a 2 ; a 3 ; … ;a n . Biết rằng aa + aa + … + aa = 0. Hỏi n có thể
bằng 2018 không?
Câu 33: Tìm số nguyên x biết:
a) -5.(-x + 7) - 3.(-x - 5) = -4.(12 - x ) + 48 c) 7.(-x - 7) - 5.(-x - 3) = 12.(3 - x)
b) -2.(15 - 3x) - 4.(-7x + 8) = -5 - 9.(-2x + 1) d) 5.(-3x - 7) - 4.(-2x - 11) = 7.(4x +
10) + 9

giúp m ik ,m cần gấp

0
26 tháng 2 2019

a) F(x) = 1 -  cos x 2 + π 4

d) K(x) = 2 1 - 1 1 + tan x 2

19 tháng 5 2017

GV
26 tháng 4 2017

a) Điều kiện: \(\left\{{}\begin{matrix}4x+2>0\\x-1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>1\)

Khi đó biến đổi pương trình như sau:

\(\ln\dfrac{4x+2}{x-1}=\ln x\)

\(\Leftrightarrow\dfrac{4x+2}{x-1}=x\)

\(\Leftrightarrow4x+2=x\left(x-1\right)\)

\(\Leftrightarrow x^2-5x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{33}}{2}\\x_2=\dfrac{5-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình là: \(x=\dfrac{5+\sqrt{33}}{2}\)

GV
26 tháng 4 2017

b) Điều kiện: \(\left\{{}\begin{matrix}3x+1>0\\x>0\end{matrix}\right.\)

Hay là: \(x>0\)

Biến đổi phương trình như sau:

\(\log_2\left(3x+1\right)\log_3x-2\log_2\left(3x+1\right)=0\)

\(\Leftrightarrow\log_2\left(3x+1\right)\left(\log_3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\log_2\left(3x+1\right)=0\\\log_3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=2^0\\x=3^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=9\end{matrix}\right.\)

Vậy nghiệm là x = 9.