K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

Đáp án C.

Ta có C n 3 + 2 n = A n + 1 2 ⇔ n ! n - 3 ! . 3 ! + 2 n = n + 1 ! n - 1 ! ⇔ n n - 1 n - 2 6 + 2 n = n + 1 n  

⇔ n - 1 n - 2 + 12 = 6 n + 1 ⇔ n 2 - 9 n + 8 = 0 ⇔ [ n = 8 n = 1 ⇒ n = 8 .  

Khi đó 2 x - 3 x 3 16 = ∑ k = 0 16 C 16 k 2 x 16 - k - 3 x 3 k = ∑ k = 0 16 C 16 k 2 16 - k - 3 k x 16 - 4 3 k .  

Số hạng không chứa x ⇔ 16 - 4 3 k = 0 ⇔ k = 12 ⇒ k = 12 ⇒ a 12 = C 16 12 2 4 ( - 3 ) 12 .

21 tháng 7 2017

17 tháng 7 2019

Chọn A

Theo đề bài ta có: .

Lại theo tính chất của cấp số cộng có:

Khi đó số hạng tổng quát trong khai triển  x   -   1 x 2 10

Số hạng không chứa x trong khai triển trên ứng với 

Vậy hệ số của số hạng không chứa x trong khai triển trên là 

22 tháng 7 2019

10 tháng 12 2018

29 tháng 7 2018

20 tháng 12 2018

Từ phương trình C n 3 + 2 n = A n + 1 2 nên n = 8

Với n = 8, ta có

2 x - 3 x 3 2 n = 2 x - 3 x 3 16 = ∑ k = 0 16 . C 16 k . 2 x 16 - k - 3 x 3 = ∑ k = 0 16 . C 16 k . 2 x 16 - k . - 3 k . x 16 - 4 k 3

Số hạng không chứa x ứng với 16 - 4 k 3 = 0 ⇔ k = 12

số hạng cần tìm C 16 12 . 2 4 . 3 12

Chọn C

14 tháng 8 2018

\(C^1_n+C^2_n=15\)

=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)

=>\(n+\dfrac{n^2-n}{2}=15\)

=>2n+n^2-n=30

=>n^2+n-30=0

=>n=5

=>(x+2/x^4)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)

SỐ hạng ko chứa x tương ứng với 5-5k=0

=>k=1

=>Số hạng đó là 5*2=10

3 tháng 12 2017

Đáp án A.