Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó A G → bằng
A. 1 2 G M →
B. - 1 3 A M →
C. 2 3 A M →
D. - 2 3 A M →
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC coa đường trung tuyến AM và trọng tâm G . khi đó tỉ soo GM/AG bằng :
A, 1/3
B,2/3
C,1/2
D,2
Theo định lý trọng tâm của đường trung tuyến:
`-` Trọng tâm của tam giác cách đỉnh `2/3,` cách đáy `1/3`
Vì `G` là trọng tâm của tam giác `ABC -> AG=2/3 AM, GM=1/3 AM`
`->` Tỉ số của \(\dfrac{GM}{AG}=\dfrac{\left(\dfrac{1}{3}\right)}{\left(\dfrac{2}{3}\right)}=\dfrac{1}{2}\)
`-> C`
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
\(AG=\frac{2}{3}AM=IG\)
\(MG=\frac{1}{3}AM\) mà \(IM=IG-MG=\frac{2}{3}AM-\frac{1}{3}AM=\frac{1}{3}AM\)
\(\Rightarrow MG=IM=\frac{1}{3}AM\) => I đối xứng với G qua M
I đối xứng với A qua tâm G
ta có: GA = GI, GM ∈ GA ( tính chất đường trung tuyến của tam giác)
Suy ra: GM ∈ GI
Mà: GM + MI = GI và GM = AG/2 (tính chất đường trung tuyến) =>GM = GI/2
Suy ra: GM = MI nên điểm M là trung điểm của GI
Vậy I đối xứng với G qua M.
Vì G là trọng tâm tam giác ABC nên: A G → = 2 3 A M →
Đáp án C