K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

7 tháng 9 2021

\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)

\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)

Bài 2: 

a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)

\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)

\(=-\dfrac{3}{5}\)

b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)

\(\Leftrightarrow8x-1=5\)

\(\Leftrightarrow8x=6\)

hay \(x=\dfrac{3}{4}\)

28 tháng 9 2021

a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)

b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)

c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)

d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)

8 tháng 11 2021

a) \(2=\sqrt{4}>\sqrt{3}\)

b) \(6=\sqrt{36}< \sqrt{41}\)

c) \(7=\sqrt{49}>\sqrt{47}\)

b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)

 

22 tháng 6 2023

a)

Có: 

\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)

Vì \(\sqrt{117}>\sqrt{116}\)  nên \(3\sqrt{13}>2\sqrt{29}\)

b)

Có:

\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)

\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)

Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\)  nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)

c)

Có:

\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)

\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)

Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)

d)

Có:

\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)

\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)

lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)

 \(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)

26 tháng 8 2023

\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)

\(b,8^5=32768\)

\(6^6=46656\)

Vì \(32768< 46656\) nên \(8^5< 6^6\)

\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)

#Ayumu

29 tháng 12 2017

a, Chia hết cho 3 thì nhóm 2 số thành 1 cặp ; chia hết cho 7 thì nhóm 3 số thành 1 cặp

b, Đề phải là A = 2009.2011

Có :A = 2009.(2010+1) = 2009.2010+2009

= 2009.2010+2010-1 = 2010.(2009+1)-1 = 2010^2-1

Vì 2010^2-1 < 2010^2 = B => A < B

c, A = (3^3)^150 = 27^150

B = (5^2)^150 = 25^150

Vì 27^150 > 25^150 => A > B

k mk nha

11 tháng 2 2017

A=1+2+2^2+2^3+....+2^9

2A=2+2^2+2^3+....+2^10

2A-A=2^10-1

A=2^10-1/2

B=5.2^8=(2^2+1).2^8=2^10+2^8

=>B>A

11 tháng 2 2017

2A = 2(1 + 2 + 22 + .... + 29 )

= 2 + 22 + 23 + ..... + 210

2A - A = (2 + 22 + 23 + ..... + 210) - (1 + 2 + 22 + .... + 29 )

A = 210 - 1  

B = 5.28 = (22 + 1).28 = 210 + 28

210 - 1 < 210 + 28

=> A < B

a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)

\(\dfrac{5}{7}=\dfrac{100}{140}\)

mà -7<100

nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)

b) \(\dfrac{216}{217}< 1\)

\(1< \dfrac{1164}{1163}\)

nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)

c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)

\(\dfrac{-14}{15}=\dfrac{-238}{255}\)

mà -180>-238

nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)

d) \(\dfrac{27}{29}>0\)

\(0>-\dfrac{2727}{2929}\)

nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)