K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

9 tháng 5 2021

a, Do \(x=-3\)\(=>A=\frac{x+3}{x+2}=\frac{-3+3}{-3+2}=\frac{0}{-1}=0\)

Vậy A = 0 khi x = -3

b, Ta có : \(B=\frac{x}{x+1}+\frac{2}{x-1}-\frac{4}{x^2-1}=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{4}{x^2-1}\)

\(=\frac{x^2-x+2x-2}{x^2-1}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+2}{x+1}\)(đpcm)

9 tháng 5 2021

iophkhghoghkghjggjhghgjhjnnrjhnjvfdjgjhrthgfjhnvfgughfuihgjfdhntfjhb fdghxdfjthfgdrtfghertgfhgrthgrthgrtrgurgfhgfhgerhgdsuhtyhdfuyhrhgthfutrugerhtgtertmgiurjhtjyiujbgf89yhjrintjihjdhr hbfbv nùgvuibherufdhtguihruvhaweufhvnfgffyhrghsr78ryughg9u8ghtityjyhyijtyjuy8hituhzihuyuyru9jr0ujtyututr09yuitutr9uirt9ui56i789i69utihirrgiu6ygjityojhojkyjyykikgjkthogfjkjhfggfjkhjkhkjkjkjkjgfohfkojhiyy0jhiuihmokhmhjkhkjykkhjkhjykjkgjkyjyotuhjnhknkhijiyjiyitihfgujdhufturgjjhi htfhrhfgrhuygrutrtuyhrthuyhrhtuhutryjuy.ôl

6 tháng 9 2017

câu 2( x-1) đổi thành (x+1).

7 tháng 9 2017

\(1,\left(x+5\right)^3-x^3-125\)

\(=x^3+15x^2+75x+125-x^3-125\)

\(=15x\left(x+5\right)\)

\(2,\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)\(\Leftrightarrow24x+10=0\)

\(\Leftrightarrow24x=-10\)

\(\Leftrightarrow x=-\dfrac{5}{12}\)

\(3,A=\left(x-1\right)^3-x^3-3x^2-3x-1\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1\)

\(=-6x^2-2\)

#đề.bài.sai.không.bạn

7 tháng 9 2017

đề sai rồi. Bài 1 kết quả=15^2+75x ms đúng

19 tháng 11 2023

a: \(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\)

\(=\dfrac{x^2+1}{x}+\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}-\dfrac{x^3\left(x-1\right)+\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1}{x}+\dfrac{x^2+x+1}{x}-\dfrac{\left(x-1\right)\left(x^3+1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+1+x^2+x+1}{x}-\dfrac{x^2-x+1}{x}\)

\(=\dfrac{2x^2+x+2-x^2+x-1}{x}=\dfrac{x^2+2x+1}{x}=\dfrac{\left(x+1\right)^2}{x}\)

b: \(x^2+x=12\)

=>\(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

Thay x=3 vào A, ta được:

\(A=\dfrac{\left(3+1\right)^2}{3}=\dfrac{16}{3}\)

Khi x=-4 thì \(A=\dfrac{\left(-4+1\right)^2}{-4}=\dfrac{9}{-4}=-\dfrac{9}{4}\)

c: \(A-4=\dfrac{\left(x+1\right)^2}{x}-4\)

\(=\dfrac{\left(x+1\right)^2-4x}{x}\)

\(=\dfrac{x^2+2x+1-4x}{x}=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}\)>0 với mọi x>0

=>A>4

19 tháng 11 2023

Cảm ơn anh mà anh giải nốt phần cuối nữa được không ạ?

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

b)\(98^2=\left(100-2\right)^2=10000-400+4=9604\)

Bài 2: 

a) Ta có: \(\left(x+3\right)^2-\left(x-3\right)^2-12x\)

\(=x^2+6x+9-x^2+6x-9-12x\)

=0

b) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)

\(=x^2-4x+4-x^2+4x-3\)

=-1

8 tháng 10 2017

1.

a) \(A=\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(A=\left(x^3-3x^2+3x-1\right)-\left(x^3+64\right)+\left(3x^2-3x\right)\)

\(A=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(A=\left(x^3-x^3\right)+\left(-3x^2+3x\right)+\left(3x-3x\right)+\left(-1-64\right)\)

\(A=-65\)

Vậy giá trị của biểu thức trên không phụ thuộc vào biến.

b) \(B=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)

\(B=\left[\left(x+y-1\right)-\left(x+y+1\right)\right].\left[\left(x+y-1\right)^2+\left(x+y-1\right).\left(x+y+1\right)+\left(x+y+1\right)^2\right]+6\left(x+y\right)^2\)

\(B=\left(x+y-1-x-y-1\right).\left[\left(x+y\right)^2-2\left(x+y\right).1+1+\left(x+y\right)^2-1+\left(x+y\right)^2+2\left(x+y\right).1+1\right]+6\left(x+y\right)^2\)

\(B=-2.\left(x^2+2xy+y^2-2x-2y+1+x^2+2xy+y^2-1+x^2+2xy+y^2+2x+2y+1\right)+6\left(x+y\right)^2\)

\(B=-2.\left(3x^2+6xy+3y^2+1\right)+6\left(x+y\right)^2\)

\(B=-2.\left(3x^2+6xy+3y^2\right)-2+6\left(x+y\right)^2\)

\(B=-6\left(x+y\right)^2+6\left(x+y\right)^2-2\)

\(B=-6\left[\left(x+y\right)^2-\left(x+y\right)^2\right]-2\)

\(B=-2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào biến.

2. \(A=x^2+6x+11\)

\(A=x^2+2x.3+3^2+2\)

\(A=\left(x+3\right)^2+2\)

Ta có: \(\left(x+3\right)^2\ge0\)

\(\Rightarrow\left(x+3\right)^2+2\ge2\)

\(\Rightarrow Min_A=2\Leftrightarrow x=-3\)

\(B=4-x^2-x\)

\(B=-x^2-x+4\)

\(B=-x^2-x-\dfrac{1}{4}+\dfrac{17}{4}\)

\(B=-\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{17}{4}\)

\(B=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\)

Ta có: \(-\left(x+\dfrac{1}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)

\(\Rightarrow Max_B=\dfrac{17}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

8 tháng 10 2017

i

111111 1111
111111 1111
111111 1111