Tìm mẫu thức chung của hai phân thức: x + 2 y x 2 y + x y 2 ; x - 4 y x 2 + 2 x y + y 2
A. xy(x + y)
B. x ( x + y ) 2
C. x y ( x + y ) 2
D. y ( x + y ) 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2+x}=\dfrac{x-1}{x\left(x-1\right)\left(x+1\right)};\dfrac{x^2-4}{x^2-1}=\dfrac{x\left(x^2-4\right)}{x\left(x-1\right)\left(x+1\right)}\\ \dfrac{1}{y-1}-\dfrac{1}{y}=\dfrac{y-y+1}{y\left(y-1\right)}=\dfrac{1}{y\left(y-1\right)}\)
Phần biến số là x − y 2
Suy ra mẫu thức chung là 3 x − y 2
Đáp án cần chọn là C
a: \(=\dfrac{x+2-x-1}{\left(x+2\right)\left(x+1\right)}=\dfrac{1}{\left(x+2\right)\left(x+1\right)}\)
\(\dfrac{x}{4+2a}\) có nghĩa khi \(a\ne-2\)
\(\dfrac{y}{4-2a}\)có nghĩa khi \(a\ne2\)
\(\dfrac{z}{4-a^2}\)có nghĩa khi \(a\ne\pm2\)
MTC: \(2\left(2+a\right)\left(2-a\right)\)
MTC : \(y^3-z^2y\)
\(\frac{x}{y^2-yz}=\frac{x}{y\left(y-z\right)}=\frac{x\left(y+z\right)}{y\left(y-z\right)\left(y+z\right)}=\frac{xy+xz}{y^3-z^2y}\)
\(\frac{z}{y^2+yz}=\frac{z}{y\left(y+z\right)}=\frac{z\left(y-z\right)}{y\left(y+z\right)\left(y-z\right)}=\frac{yz-z^2}{y^3-z^2y}\)
\(\frac{y}{y^2-z^2}=\frac{y}{\left(y-z\right)\left(y+z\right)}=\frac{y^2}{y^3-z^2y}\)