K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Đáp án B

\(A=\left(lna+log_{\alpha}e\right)^2+ln^2a-\log_a^2e\)

\(=ln^2a+\log_{\alpha}^2e+2\cdot lna\cdot\log_{\alpha}e+ln^2a-\log_{\alpha}^2e\)

\(=2\cdot\log_e^2\alpha+2\cdot\log_e\alpha\cdot\log_{\alpha}e\)

\(=2\cdot ln^2\alpha+2\)

4 tháng 5 2016

Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)

             \(=\log_ba+1-\log_ba=1\)

3 tháng 10 2015

 ta có:

\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)

\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)

\(=3log^2_2a+3log^a_2+1\)

\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)

\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)

9 tháng 3 2022

chịu

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

23 tháng 10 2021

\(a,P=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\\ P=\sqrt{a}+2+2+\sqrt{a}=2\sqrt{a}+4\\ b,P=a+1\Leftrightarrow a+1=2\sqrt{a}+4\\ \Leftrightarrow a-2\sqrt{a}-3=0\\ \Leftrightarrow\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)=0\\ \Leftrightarrow\sqrt{a}=3\left(\sqrt{a}\ge0\right)\\ \Leftrightarrow a=9\left(tm\right)\)

5 tháng 12 2023

a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)

= x³ - 125 - x² + 4 + x³ + x² + 4x

= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)

= 2x³ + 4x - 121

b) Tại x = -2 ta có:

A = 2.(-2)³ + 4.(-2) - 121

= 2.(-8) - 8 - 121

= -16 - 129

= -145

c) x² - 1 = 0

x² = 1

x = -1; x = 1

*) Tại x = -1 ta có:

A = 2.(-1)³ + 4.(-1) - 121

= 2.(-1) - 4 - 121

= -2 - 125

= -127

*) Tại x = 1 ta có:

A = 2.1³ + 4.1 - 121

= 2.1 + 4 - 121

= 2 - 117

= -115

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}=\dfrac{a^2\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{4}{5}}}{a^{\dfrac{1}{4}}}=\dfrac{a^{\dfrac{47}{15}}}{a^{\dfrac{1}{4}}}=a^{\dfrac{173}{60}}\)

\(\Rightarrow log_a\left(\dfrac{a^2\cdot\sqrt[3]{a}\cdot\sqrt[5]{a^4}}{\sqrt[4]{a}}\right)=log_a\left(a^{\dfrac{173}{60}}\right)=\dfrac{173}{60}\)

\(a^{2log_a\left(\dfrac{\sqrt{105}}{30}\right)}=a^{log_a\left(\dfrac{7}{60}\right)}=\dfrac{7}{60}\)

Vậy \(B=\dfrac{173}{60}+\dfrac{7}{60}=\dfrac{180}{60}=3\)