K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Do a + 4 c >  b +  4c nên : a + 4c + (- 4c) > b + 4c + (-4c) hay a>  b.

Nhân cả 2 vế với 6> 0 ta được: 6a > 6b.

Chọn C.

19 tháng 3 2017

* Từ a- b > a suy ra: a – b + ( -a) > a + (-a) hay – b >0

⇔ b < 0  ( nhân cả 2 vế với -1).

* Từ a + b < b suy ra: a + b + (- b) <  b + (-b)

Hay a < 0

Vậy a < 0 và  b < 0 .

25 tháng 2 2019

Do a< b mà 2 > 0 nên 2a < 2b  (*)

Cộng cả 2 vế của (*)  với 5c ta được: 2a +  5c <  2b +  5c

20 tháng 10 2016

\(a^2+2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2+2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\begin{cases}\left(a+1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}\)

\(\Rightarrow\left(a+1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

\(\Rightarrow\begin{cases}a+1=0\\b+2=0\\2c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=-1\\b=-2\\c=\frac{1}{2}\end{cases}\)

 

21 tháng 10 2016

ths bạn nhé vui

23 tháng 1 2018

Để ý rằng 1 < a < b < c nên log a b > 1. Khi đó nếu xét cùng các cơ số ab thì

log a log a b > log b log a b > 0

Do 1 < a < b < c nên

log c a < 1 ⇒ 0 > log c log c a > log b log c a

Từ đó suy ra

log a log a b + log b log b c + log c log c a >   log b log a b . log b c . log c a = log b 1 = 0

Đáp án A

16 tháng 9 2018

Áp dụng tính chất: Nếu a > b  và c là số bất kì thì a + c > b + c.

Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng.  ( bỏ đi)

Đáp án là C.

9 tháng 9 2018

TA CÓ:

\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)

\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)

ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)

\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)

TA CẦN C/M:

\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)        \(\left(=2abc\left(a+b+c\right)\right)\)

ÁP DỤNG BĐT BUNHIA TA CÓ:

\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)

VẬY CẦN C/M:

\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)

XÉT HIỆU:

\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)

\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)

VÌ:

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)

\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)

\(\Rightarrow DPCM\)

Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b

26 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)

Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)

27 tháng 11 2019

Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath

1 tháng 10 2017

Nếu a > b và a > c thì:

      a +  a > b + c hay 2a >  b + c