K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

*  *  *           *  *  *        *  *    *      *  *  *           *  *  *        *  *    *

A B C          A C B        B A  C      B   C  A         C  A B      C  B  A

QT
Quoc Tran Anh Le
Giáo viên
29 tháng 11 2023

Giá sách của em có 3 ngăn. Em sắp xếp giá sách của mình theo 3 thể loại sách như sau:

 

a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)

b: TH1: 3 nam 2 nữ

=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)

TH2: 2 nam 3 nữ

=>Số cách xếp là: 2!*3!*2!(cách)

TH3: 1 nam 4 nữ

=>Số cách xếp là 1!*4!*2!(cách)

TH4: 0 nam 5 nữ

=>Số cách xếp là 5!(cách)

=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)

c: Số cách chọn 2 nữ trong 7 nữ là: 

\(C^2_7\left(cách\right)\)

Số cách xếp 3 nam và 2 nữ là:

\(3!\cdot3!\left(cách\right)\)

=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)

8 tháng 1 2023

amagzic

15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
18 tháng 5 2017

Tổ hợp - xác suất

NV
1 tháng 11 2021

Có \(5!\) cách

Đáp án D

1 tháng 11 2021

D

10 tháng 8 2017

• Giai đoạn 1: Chọn 10 người từ 20 người xếp vào bàn A nên có C 20 10  cách chọn người. Tiếp theo là 10 người vừa chọn này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 1 có  C 20 10 .9! cách.

• Giai đoạn 2: 10 người còn lại xếp vào bàn B, 10 người này có 9! cách chọn chỗ ngồi. Vậy giai đoạn 2 có 9! cách.

Vậy có tất cả  C 20 10 . 9 ! . 9 !  cách thỏa mãn bài toán. Chọn B.

22 tháng 6 2019

Chọn A

Giả sử khi xếp 10 người vào một bàn tròn, hai cách sắp xếp được xem là như nhau nếu cách này nhận được từ cách kia bằng cách xoay bàn đi một góc nào đó.

Bài toán trên được chia thành các công đoạn sau:

Công đoạn 1: Chọn 10 người trong 20 người đã cho để xếp vào bàn tròn A: có  C 20 10  cách.

Công đoạn 2: Sắp xếp 10 người vừa chọn được ở công đoạn 1 vào bàn tròn A: có 9! cách.

Công đoạn 3: Sắp xếp 10 người còn lại vào bàn tròn B: có 9! cách.

Vậy số cách sắp xếp là:  C 20 10 .9!.9! cách.

5 tháng 1 2023

b) vì người mỹ và anh có thể dùng cùng 1 thứ tiếng