K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
Giả sử ban đầu có $a$ dãy ghế thì mỗi dãy có $b$ người. Trong đó $a,b$ là số tự nhiên $\neq 0$. Ta có: $ab=150(1)$

Khi thêm 71 người thì có tổng $150+71=221$ người.

Số dãy ghế: $a+2$

Số người mỗi dãy: $b+3$

Ta có: $(a+2)(b+3)=221(2)$

Từ $(1); (2)\Rightarrow 3a+2b=65$

$\Rightarrow b=\frac{65-3a}{2}$. Thay vào $(1)$ thì:

$a.\frac{65-3a}{2}=150$

$\Leftrightarrow a(65-3a)=300$

$\Leftrightarrow 3a^2-65a+300=0$

$\Leftrightarrow a=15$ (chọn) hoặc $a=\frac{20}{3}$ (loại)

Vậy có $15$ dãy ghế.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:

                   \({P_5} = 5!\) (cách)

b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:

                             \({P_4} = 4! = 24\) (cách)

a: SỐ cách xếp là;

5!*6!*2=172800(cách)

b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)

 

NV
1 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: \(2!=2\) cách

Xếp 3 cuốn hóa cạnh nhau: \(3!=6\) cách

Xếp 4 cuốn toán cạnh nhau: \(4!=24\) cách

Xếp bộ 3 toán-lý-hóa: \(3!=6\) cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

\(2.6.24.6=1728\) cách

3 tháng 3 2023

Xếp 2 cuốn sách lý cạnh nhau: 2!=2 cách

Xếp 3 cuốn hóa cạnh nhau: 3!=6 cách

Xếp 4 cuốn toán cạnh nhau: 4!=24 cách

Xếp bộ 3 toán-lý-hóa: 3!=6 cách

Theo quy tắc nhân, ta có số cách xếp thỏa mãn là: 

2.6.24.6=1728 cách

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là

                             \({P_6} = 6! = 720\) (cách)

13 tháng 4 2019

Số cách xếp 3 nam và 3 nữ vào 6 ghế là 6! Cách.

Suy ra: n(Ω)=6!=720n(Ω)=6!=720

a) Ta gọi A là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1

2

3

4

5

6

Trường hợp 1:

+ Nam ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nữ ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số 1, 3, 5 suy ra có 3! cách xếp

+ Nam ngồi ghế số 2, 4, 6 suy ra có 3! cách xếp

Suy ra trường hợp 1 có 3!.3! = 36 cách xếp

Suy ra:

N(A) = 3!.3! + 3!.3! = 36 + 36 = 72 cách xếp.

Vậy P(A)=n(A)n(Ω)=72720=110=0,1P(A)=n(A)n(Ω)=72720=110=0,1

b) Gọi biến cố B: “Ba bạn nam ngồi cạnh nhau”

Xem 3 bạn nam như một phần tử N và N cùng 3 bạn nữ được xem như ngồi vào 4 ghế được đánh số như sau:

1

2

3

4

_ Số cách xếp N và 3 nữ vào 4 ghế là 4!

_ Mỗi cách hoán vị 3 nam cho nhau trong cùng một vị trí ta có thêm 3! cách xếp khác nhau.

Suy ra n(B) = 4!.3!=144

Vậy : P(B)=n(B)n(Ω)=144720=15=0,2

24 tháng 9 2023

a) Ban tổ chức đã huy động số người phiên dịch cho hội nghị đó là:

35 + 30 – 16 = 49 (người)

Vậy ban tổ chức đã huy động 49 người phiên dịch cho hội nghị đó.

b) Số người chỉ phiên dịch được tiếng Anh là:

35 – 16 = 19 (người)

Vậy có 19 người chỉ phiên dịch được tiếng Anh.

c) Số người chỉ phiên dịch được tiếng Pháp là:

30 – 16 = 14 (người)

Vậy có 14 người chỉ phiên dịch được tiếng Pháp.