Cho tam giác DEF vuông tại D, I LÀ TRUNG ĐIỂM CỦA EF. Gọi A là điểm đôi xứng với I qua DE, B là giao điểm của AI và DE. K là điểm xứng với với I qua ED. H là giao điểm ID và IK
a) Tứ giác DBI LÀ HÌNH GÌ ?VÌ SAO?
B) Nhận dạng tứ giác DIFA,DIEK?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: A và H đối xứng nhau qua DF
nên DF là đường trung trực của AH
=>B là trung điểm của AH và DF⊥AH tại B
Xét tứ giác DBAC có
\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)
Do đó: DBAC là hình chữ nhật
c: Xét ΔDEF có
A là trung điểm của EF
AB//DE
Do đó: B là trung điểm của DF
Xét tứ giac DAFH có
B là trung điểm của DF
B là trung điểm của AH
Do đó: DAFH là hình bình hành
mà AD=AF
nên DAFH là hình thoi
a: Xét tứ giác DMKF có
KM//DF
KM=DF
Do đó: DMKF là hình bình hành
a: M đối xứng A qua BC
nên BC là trung trực của AM
=>BA=BM; CA=CM
mà BA=CA
nên BA=BM=CA=CM
=>ABMC là hình thoi
b: Xét tứ giác AHCI có
K là trung điểm chung của AC và HI
góc AHC=90 độ
Do đó: AHCI là hình chữ nhật
c: Xét ΔBAC có CH/CB=CK/CA
nen HK//AB và HK=AB/2
=>HK//AD và HK=AD
=>ADHK là hình bình hành
=>AH cắt DK tại trung điểm của mỗi đường(1)
Xét tứ giác AIHB có
AI//HB
AI=HB
Do đó: AIHB là hình bình hành
=>AH cắt IB tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AH,IB,DK đồng quy
Đề thiếu rồi bạn