Một tam giác cân có một cạnh bằng 6 cm. Tính hai cạnh còn lại, biết chu vi của tam giác đó bằng 20 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi độ dài cạnh cần tìm là x (cm) (x > 0)
Theo hệ quả của bất đẳng thức tam giác, ta có:
13 - 6 < x < 13 + 6
7 < x < 19
Do tam giác cân nên x = 13 (cm)
b) Chu vi tam giác cân đó:
6 + 13 + 13 = 32 (cm)
a) Áp dụng Bđt tam giác, ta được:
7-2<a<7+2
\(\Leftrightarrow5< a< 9\)
hay \(a\in\left\{6;7;8\right\}\)
b) Trường hợp 1: Độ dài cạnh bên còn lại là 1cm
=> Trái với BĐT tam giác vì 1cm+1cm<4cm
Trường hợp 2: Độ dài cạnh bên còn lại là 4cm
=> Đúng với BĐT tam giác vì 4cm+4cm>1cm; 4cm+1cm>5cm
Chu vi tam giác là:
4cm+4cm+1cm=9(cm)
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
tổng độ dài cạnh thứ nhất và cạnh thứ 2 là:
10 - 7 = 3 (cm)
Độ dài cạnh thứ nhất là:
(5 + 3) : 2= 4 (cm)
Độ dài cạnh thứ 2 là:\
(5-3) : 2= 1(cm)
Đáp số:...
Nếu cạnh đã cho (6cm) là cạnh đáy thì hai cạnh còn lại là 7 cm và 7 cm, thỏa mãn bất đẳng thức tam giác.
Nếu cạnh đã cho (6 cm) là cạnh bên thì hai cạnh còn lại là 6 cm và 8 cm, thỏa mãn bất đẳng thức tam giác.