Số x = 1 là nghiệm của bất phương trình 2 m - 3 m x 2 ≥ 1 khi và chỉ khi
A. m ≤ - 1
B. m ≥ - 1
C. - 1 ≤ m ≤ 1
D. m ≥ - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.
Ta có: 2 x - 1 > 0 x - m < 2 ⇔ x > 1 2 x < 2 + m
Để hệ bất phương trình có nghiệm khi và chỉ khi 1 2 < 2 + m ⇔ m > - 3 2
Ta có: 2x + 4 < 0 khi x < - 2.
* Xét mx + 1 > 0 (*)
+ Nếu m = 0 thì (*) trở thành: 0x + 1 >0 (luôn đúng).
+ Nếu m > 0 thì * ⇔ m x > - 1 ⇔ x > - 1 m
Suy ra, tập nghiệm của hệ bất phương trình không thể - ∞ ; - 2
+ Nếu m < 0 thì * ⇔ m x > - 1 ⇔ x < - 1 m
Để hệ bất phương trình có tập nghiệm là - ∞ ; - 2 khi và chỉ khi :
- 1 m > - 2 ⇔ - 1 + 2 m m > 0 ⇔ - 1 + 2 m < 0 ( vì m < 0)
⇔ 2 m < 1 ⇔ m < 1 2
Kết hợp điều kiện m < 0 ta được: m < 0
Từ các trường hợp trên suy ra: m ≤ 0 .
Ta có 2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2
Số x = 1 là nghiệm của bất phương trình nên:
2 m - 3 m ≥ 1 ⇔ - m ≥ 1 ⇔ m ≤ - 1