K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

B C A O O' P M N P' H 1 2 1

4 tháng 5 2020

a) Ta có : \(\widehat{MOA}=\widehat{O_1}'\left(=180^o-2\widehat{A_1}\right)\)

\(\Rightarrow\)O'N // OM

Gọi P là giao điểm của MN và OO'

Ta có : \(\frac{O'P}{OP}=\frac{O'N}{OM}=\frac{R'}{R}\)

gọi P' là giao điểm của BC và OO',ta có :

\(\frac{O'P'}{OP'}=\frac{O'C}{OB}=\frac{R'}{R}\)

Suy ra \(P'\equiv P\)

b) gọi H là hình chiếu của O' trên OM

tứ giác MNO'O là hình thang nên \(S=\frac{\left(OM+O'N\right)O'H}{2}\)

\(S=\frac{R+R'}{2}.O'H\le\frac{R+R'}{2}.OO'=\frac{\left(R+R'\right)^2}{2}\)

Dấu "=" xảy ra khi \(H\equiv O\Leftrightarrow OM\perp OO'\)

Vậy ...

22 tháng 3 2016

nhớ vẽ hình nữa nha !!

Bài 1:

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

=>\(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBKD nội tiếp

BD là đường kính

Do đó: ΔBKD vuông tại K

=>BK\(\perp\)KD tại K

=>BK\(\perp\)AD tại K

Xét ΔABD vuông tại B có BK là đường cao

nên \(AK\cdot AD=AB^2\left(1\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

Câu 8:

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=60^0\)

Xét ΔOBC có OB=OC và \(\widehat{OBC}=60^0\)

nên ΔOCB đều

=>BC=OB=R

=>BO=BM=R

=>B là trung điểm của OM

Xét ΔOCM có

CB là đường trung tuyến

CB=1/2OM

Do đó: ΔOCM vuông tại C

b: Ta có: OB+BM=OM

=>OM=R+R=2R

Ta có: ΔOCM vuông tại C

=>\(OC^2+CM^2=OM^2\)

=>\(CM^2=\left(2R\right)^2-R^2=3R^2\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a. Vì $AB$ là tiếp tuyến của $(O)$ nên $AB\perp BO$. Tức là tam giác $ABO$ vuông tại $B$

$AB=\sqrt{OA^2-OB^2}=\sqrt{5^2-3^2}=4$ (cm)

$\frac{AB}{OA}=\sin \widehat{O_1}=\frac{BH}{BO}$

$\Rightarrow BH=\frac{AB.BO}{OA}=\frac{4.3}{5}=\frac{12}{5}$ (cm)

c.

Vì $BOC$ là tam giác cân tại $O$ (OB=OC=R) nên đường cao $OH$ đồng thời là đường trung trực của $BC$

$A,H,O$ thẳng hàng nên $A$ cũng nằm trên đường trung trực của $BC$

$\Rightarrow AB=AC$

Xét tam giác $ABO$ và $ACO$ có:

$AB=AC$

$BO=CO$

$AO$ chung

$\Rightarrow \triangle ABO=\triangle ACO$ (c.c.c)

$\Rightarrow \widehat{ACO}=\widehat{ABO}=90^0$

$\Rightarrow AC$ là tiếp tuyến của $(O)$

b.

Vì $\triangle ABO=\triangle ACO$ nên $\widehat{BAO}=\widehat{CAO}$

$\Rightarrow \widehat{BAC}=2\widehat{BAO}$

$\sin \widehat{BAO}=\frac{BO}{AO}=\frac{3}{5}$

$\Rightarrow \widehat{BAO}=37^0$

$\Rightarrow \widehat{BAC}=2\widehat{BAO}=2.37^0=74^0$

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Hình vẽ:

16 tháng 1 2021

a) Vì đường tròn (O) và (O') tiếp xúc ngoài tại A nên O, A và O’ thẳng hàng.

Ta có: MB = MC (M là TĐ của BC)

Xét (O) ta có: DE vg góc BC (gt)

mà M là TĐ của BC

Suy ra : M là TĐ của DE ( đường kính vuông góc với dây cung)

Xét TG  BDCE có  2 đường chéo DE và BC cắt nhau tại trung điểm M của mỗi đường

Suy ra: BDCE là hình bình hành.

 

16 tháng 1 2021

(Bổ sung)

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi 

1 tháng 3 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

IO = OB – IB => (I) tiếp xúc trong với (O).

OK = OC – KC => (K) tiếp xúc trong với (O)

IK = OH + KH => (I) tiếp xúc ngoài với (K)