Cho biết và thì x, y có giá trị là:
A.
x = 2; y = -5
B.
x = 2; y = 5
C.
x = -2; y = -5
D.
x = -2; y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a.x+a.y+b.x+b.y
= a(x+y) + b(x+y) = (x+y)(a+b)=17.(-2)=-34
b, a.x-a.y+b.x-b.y
= a(x-y)+b(x-y)
=(x-y)(a+b)=-7(-1)=7
:)
a) a.x + a.y + b.x + b.y
= a.(x + y) + b.(x + y)
= a . 17 + b . 17
= (a +b) . 17
= -2 . 17 = -34
b) a.x - a.y + b.x - b.y
= a.(x - y) + b.(x - y)
= a . (-1) + b.(-1)
= (a + b) . (-1)
= -7 . (-1) = 7
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{2}=t$
$\Rightarrow x=3t; y=2t$. Thay vô điều kiện $4x-y=20$ ta có:
$4.3t-2t=20$
$\Leftrightarrow 10t=20\Leftrightarrow t=2$
$\Rightarrow x=3t=6; y=2t=4$
a: x và y tỉ lệ thuận nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}=\dfrac{x_1+x_2}{y_1+y_2}=\dfrac{6}{-2}=-3\)
=>x=-3y
b: x=-3y
=>\(y=-\dfrac{1}{3}x\)
Thay x=2 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
Thay x=4 vào \(y=-\dfrac{1}{3}x\), ta được:
\(y=-\dfrac{1}{3}\cdot4=-\dfrac{4}{3}\)
\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ \(y=2\left(m-1\right)-x\)
Thay vào (2), ta có:
\(2x-2\left(m-1\right)+x=m+8\)
\(\Leftrightarrow3x-2m+2=m+8\\ \Leftrightarrow3x=3m+6\\ \Leftrightarrow x=m+2\)
\(\Rightarrow y=2\left(m-1\right)-\left(m+2\right)\\ \Leftrightarrow y=2m-2-m-2\\ \Leftrightarrow y=m-4\)
Ta có:
\(x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2\\ =m^2+4m+4+m^2-8m+16\\ =2m^2-4m+20\\ =2\left(m-1\right)^2+18\)
\(Vì\left(m-1\right)^2\ge0\forall m\in R\\ \Rightarrow2\left(m-1\right)^2+18\ge18\\ \Rightarrow x^2+y^2\ge18\)
Dấu "=" xảy ra ⇔ \(m=1\)
B
Chọn B