K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

Đặt A= 1.2.3+2.3.4+3.4.5+...+101.102.103

=>4A=1.2.3.4+2.3.4.4+3.4.5.4+...+101.102.103.4

=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+...+101.102.103.(104-100)

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+101.102.103.104-100.101.102.103

=101.102.103.104-0.1.2.3

=110355024

=>A=110355024:4=27588756

AH
Akai Haruma
Giáo viên
3 tháng 11 2023

Lời giải:

Gọi tổng trên là A

$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$

$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$

$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$

$\Rightarrow A=\frac{1313}{5253}$

AH
Akai Haruma
Giáo viên
3 tháng 11 2023

Lời giải:

Gọi tổng trên là A

$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$

$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$

$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$

$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$

$\Rightarrow A=\frac{1313}{5253}$

7 tháng 5 2018

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

8 tháng 5 2018

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

29 tháng 11 2016

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

1 tháng 11 2023

Coi A = 1.2.3 + 2.3.4 +... + 98.99.100

 4A = 1.2.3.4 + 2.3.4.4 +... + 98.99.100.4

 4A = 1.2.3.4 + 2.3.4.(5-1) +... + 98.99.100.(101-97)

4A = 1.2.3.4+2.3.4.5-1.2.3.4 + ... + 98.99.100.101-97.98.99.100

4A = 98.99.100.101

4A =97990200

A = 97990200: 4

A=24497550

19 tháng 4 2024

cảm ơn bạn

15 tháng 8 2018

A  = 1.2.3 + 2.3.4 + ....+ 48.49.50

=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ...+ 48.49.50.(51-17)

= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .....+ 48.49.50.51 - 47.48.49.50

= 48.49.50.51

=> A =  48.49.50.51:4 = 12.49.50.51

bài b) làm tương tự nha

21 tháng 1 2016

90 

Tick nhé

21 tháng 1 2016

90 

tick nhé

13 tháng 1 2023

A= 1.2.3 + 2.3.4 + 3.4.5 +.....+ 98.99.100

4A = 98.99.100.4 + .....+ 3.4.5.4 + 2.3.4.4 + 1.2.3.4

4A = 98.99.100.(101-97) +... + 2.3.4.(5-1) + 1.2.3.4

4A = 98.99.100.101 - 97.98.99.100+......+2.3.4.5 - 1.2.3.4 + 1.2.3.4

4A = 98.99.100.101

  A = 98.99.100.101 : 4

  A = 24497550