Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi tổng trên là A
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$
$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$
$\Rightarrow A=\frac{1313}{5253}$
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{4}-\dfrac{1}{2\left(n+1\right)\left(n+2\right)}\)
B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4
= [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4
=\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}\\ =\frac{306}{1225}\)(mà đây là toán 6 mà :V)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2010.2011.2012}\)
\(\Rightarrow\frac{1}{4}A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4\left(5-1\right)}+\frac{1}{3.4.5\left(6-2\right)}+...+\frac{1}{2010.2011.2012.\left(2013-2009\right)}\)
\(\Rightarrow\frac{1}{4}A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}-\frac{1}{1.2.3.4}+\frac{1}{3.4.5.6}-\frac{1}{2.3.4.5}+...+\frac{1}{2010.2011.2012.2013}-\frac{1}{2009.2010.2011.2012}\)
\(\Rightarrow\frac{1}{4}A=\frac{1}{2010.2011.2012.2013}\)
\(\Rightarrow A=\frac{4}{2010.2011.2012.2013}\)
\(\Rightarrow A=\frac{1}{2010.2011.503.2013}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(2A=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
mình áp dụng công thức tổng quát:\(\frac{a}{n\left(n+1\right)\left(n+2\right)...\left(n+a\right)}=\frac{1}{n\left(n+1\right)\left(n+a-1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)...\left(n+a\right)}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=2\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\right)\)
<=>\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
<=>\(2A=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{2\left(n+1\right)\left(n+2\right)}=\frac{n\left(n+3\right)}{2\left(n+1\right)\left(n+2\right)}\)
<=>\(A=\frac{n\left(n+3\right)}{2\left(n+1\right)\left(n+2\right)}.\frac{1}{2}=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
Đặt biểu thức là A
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+.2018.2019\)
\(2A=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\left(\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(2A=\frac{1}{2}-\frac{1}{2018.2019}\)
A= 1/4 - 1/(2018.2019)
Vậy A = ... (tự ghi)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2017.2018.2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2018.2019}\right)\)
Tự làm nốt
Lời giải:
Gọi tổng trên là A
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$
$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$
$\Rightarrow A=\frac{1313}{5253}$