Chứng tỏ rằng các số 31, 211, 3201, 10031 là các số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ tập trung giải câu b thui nha
a) p = 2
b) Ta có S= 5 + 52+53+...+52013
=> S = (5+52+53)+...+(52011+52012+52013)
=> S =5(1+5+25)+...+52011(1+5+25)
=> S = 5.31+....+52011.31
=> S = 31(5+54+...+52011)
=> S chia hết cho 31 (ĐPCM)
a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )
Xét p > 2 :
Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )
Vậy \(p=2\)
b) \(S=5+5^2+5^3+....+5^{2013}\)
Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)
\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)
\(S=5.31+.....+5^{2011}.31\)
\(S=31\left(5+......+5^{2011}\right)\)
Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)
\(\Rightarrow S⋮31\)
Vậy \(S⋮31\left(ĐPCM\right)\)
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Xét các trường hợp:
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Dể thấy 31 = 30 + 1
= 1.2.3.5 + 1
Số 31 không chia hết các số nguyên tố 2, 3, 5 ma 52 = 25 < 35 là ước nguyên tố lớn nhất mà 52 < 31
Suy ra 31 là số nguyên tố
Các số khác ta củng chứng minh tương tự.