K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Dể thấy 31 = 30 + 1

                       = 1.2.3.5 + 1

Số 31 không chia hết các số nguyên tố 2, 3, 5 ma 52 = 25 < 35 là ước nguyên tố lớn nhất mà 52 < 31

Suy ra 31 là số nguyên tố

Các số khác ta củng chứng minh tương tự.

1 tháng 2 2019

Mk chỉ tập trung giải câu b thui nha

a) p = 2

b) Ta có S= 5 + 52+53+...+52013

              => S = (5+52+53)+...+(52011+52012+52013)

          => S =5(1+5+25)+...+52011(1+5+25)

         => S = 5.31+....+52011.31

        => S = 31(5+54+...+52011)

       => S chia hết cho 31 (ĐPCM)

1 tháng 2 2019

a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )

Xét p > 2 :

Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )

Vậy \(p=2\)

b) \(S=5+5^2+5^3+....+5^{2013}\)

Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)

\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

     \(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)

     \(S=5.31+.....+5^{2011}.31\)

     \(S=31\left(5+......+5^{2011}\right)\)

Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)

\(\Rightarrow S⋮31\)

Vậy \(S⋮31\left(ĐPCM\right)\)

11 tháng 6 2016

Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!

Câu 1:

p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2

Nếu p=3k+2

=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)

=>p=3k+1

=>p+8=3k+1+8=3k+9 là hợp số (đpcm)

Câu 2:

Ta có: abcabc=abc.1001=abc.7.11.13

Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)

10 tháng 6 2016

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

17 tháng 5 2015

Xét các trường hợp:

-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại

-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.

-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2

   +) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại

   +) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.

  Vậy suy ra điều phải chứng minh với p = 3

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

6 tháng 11 2021

ta có : p + 4 là số lẻ => p là số lẻ

P + 15 = số chẵn chia hết cho 2 => p + 15 là hợp số khi p + 4 là số nguyên tố