Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ tập trung giải câu b thui nha
a) p = 2
b) Ta có S= 5 + 52+53+...+52013
=> S = (5+52+53)+...+(52011+52012+52013)
=> S =5(1+5+25)+...+52011(1+5+25)
=> S = 5.31+....+52011.31
=> S = 31(5+54+...+52011)
=> S chia hết cho 31 (ĐPCM)
a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )
Xét p > 2 :
Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )
Vậy \(p=2\)
b) \(S=5+5^2+5^3+....+5^{2013}\)
Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)
\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)
\(S=5.31+.....+5^{2011}.31\)
\(S=31\left(5+......+5^{2011}\right)\)
Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)
\(\Rightarrow S⋮31\)
Vậy \(S⋮31\left(ĐPCM\right)\)
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Xét các trường hợp:
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Dể thấy 31 = 30 + 1
= 1.2.3.5 + 1
Số 31 không chia hết các số nguyên tố 2, 3, 5 ma 52 = 25 < 35 là ước nguyên tố lớn nhất mà 52 < 31
Suy ra 31 là số nguyên tố
Các số khác ta củng chứng minh tương tự.