Cho hình lăng trụ ABC.A'B'C'. Gọi H là trung điểm của A'B'. Đường thẳng B'C song song với mặt phẳng nào sau đây?
A. (AHC')
B. (AA'H)
C. (HAB)
D. (HA'C')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của B’C và BC’, I là trung điểm của AB.
Do HB’= AI và HB’ //AI nên AHB’I là hình bình hành
=> AH// B’I.
Mặt khác : KI// AC’ nên (AHC’) // (B’CI).
Do đó: B’C //(AHC’).
Chọn A.
a) Do ABC.A’B’C’ là hình lăng trụ nên ta có: BCC’B’ là hình bình hành
Xét tứ giác BCC’B’ có M và M’ lần lượt là trung điểm của BC và B’C’ nên MM’ là đường trung bình
Lại có: AA’// BB’ và AA’= BB’ ( tính chất hình lăng trụ) (2)
Từ (1) và (2) suy ra: MM’// AA’ và MM’ = AA’
=> Tứ giác AMM’A’ là hình bình hành
b) Trong (AMM’A’) gọi O = A’M ∩ AM’, ta có :
Ta có : O ∈ AM’ ⊂ (AB’C’)
⇒ O = A’M ∩ (AB’C’).
c)
Gọi K = AB’ ∩ BA’, ta có :
K ∈ AB’ ⊂ (AB’C’)
K ∈ BA’ ⊂ (BA’C’)
⇒ K ∈ (AB’C’) ∩ (BA’C’)
Dễ dàng nhận thấy C’ ∈ (AB’C’) ∩ (BA’C’)
⇒ (AB’C’) ∩ (BA’C’) = KC’.
Vậy d cần tìm là đường thẳng KC’
d) Trong mp(AB’C’), gọi C’K ∩ AM’ = G.
Ta có: G ∈ AM’ ⊂ (AM’M)
G ∈ C’K.
⇒ G = (AM’M) ∩ C’K.
+ K = AB’ ∩ A’B là hai đường chéo của hình bình hành ABB’A’
⇒ K là trung điểm AB’.
ΔAB’C’ có G là giao điểm của 2 trung tuyến AM’ và C’K
⇒ G là trọng tâm ΔAB’C’.
Đáp án B.
Phương pháp:
Sử dụng công thức Côsin:
a 2 = b 2 + c 2 − 2 b c cos A
Cách giải:
Dựng hình bình hành ABCD (tâm I). Khi đó, A’B’CD là hình bình hành (do A ' B ' → = A B → = D C → )
⇒ A ' D / / B ' C ⇒ A ' B ; B ' C = A ' B ; A ' D
Tam giác ABC vuông tại A
⇒ B C = A B 2 + A C 2 = a 2 + a 3 2 = 2 a
H là trung điểm của BC
⇒ H B = H C = a
Tam giác A’BH vuông tại H
⇒ A ' B = A ' H 2 + H B 2 = a 3 2 + a 2 = 2 a
Tam giác ABC vuông tại A
⇒ cos A B C = A B B C = a 2 a = 1 2
ABCD là hình bình hành
⇒ A B / / C D ⇒ D C B = 180 0 − A B C ⇒ cos D C B = − c osABC=- 1 2
Tam giác BCD:
B D = B C 2 + C D 2 − 2 B C . C D . cos D C B = 2 a 2 + a 2 − 2.2 a . a . − 1 2 = a 7
Tam giác CDH:
D H = C H 2 + C D 2 − 2 C H . C D . cos D C B = a 2 + a 2 − 2 a . a . − 1 2 = a 3
Tam giác A’DH vuông tại H:
A ' D = A ' H 2 + H D 2 = a 3 2 + a 3 2 = a 6
Tam giác A’BH:
cosBA ' D = A ' D 2 + A ' B 2 − B D 2 2 A ' D . A ' B = a 6 2 + 2 a 2 − 7 a 2 2. a 6 .2 a = 3 4 6 = 6 8 .
Đáp án A
Gọi và I là trung điểm của AB
Do HB' = AI, HB'//AI => AHB'I là hình bình hành => AH//B'I
Mặt khác KI//AC' nên (AHC')//(B'CI)=> B'C//(AHC')
a) Ta có \(\left( {MNP} \right) \cap \left( {ABC} \right) = MN,\left( {ABC} \right) \cap \left( {ACC'A'} \right) = AC,AC//MN\) (do MN là đường trung bình của tam giác ABC) suy ra giao tuyến của (MNP) và (ACC'A') song song với MN và AC.
Qua P kẻ đường thẳng song song với AC cắt CC' tại H.
PH là giao tuyến của (MNP) và (ACC'A').
Nối H với N cắt B'C tại K.
Vậy K là giao điểm của (MNP) và B'C.
b) Gọi giao điểm BC' và B'C là O.
Ta có ACC'A' là hình bình hành P là trung điểm AA', PH //AC suy ra H là trung điểm CC'.
Xét tam giác CC'B ta có: HN là đường trung bình suy ra CK = OK.
Mà OC = OB' suy ra \(\frac{{KB'}}{{KC}} = 3\).
Đáp án B
Xét (A’B’C’) và (A’BC) có:
A’ là điểm chung
B’C’ // BC
giao tuyến của 2 mặt phẳng là đường thẳng d qua A’ song song với B’C’
⇒ d và B’C’ đồng phẳng
Mà d chứa A’
⇒ d thuộc mặt phẳng (A’B’C’)
Mà H ∈ A’B’ ⇒ H ∈ (A’B’C’)
⇒ Mặt phẳng đi qua d và H, cắt tứ diện ABC. A’B’C’ là (A’B’C’)
a) Gọi H là trung điểm của BC
△ABC có: E là trung điểm của AC, H là trung điểm của BC
Suy ra: EH // AB
Mà AB // A'B'
Do đó: EH // A'B' hay EH // B'F (1)
Ta có: EH // AB nên \(\dfrac{EH}{AB}=\dfrac{EC}{AC}=\dfrac{1}{2}\)
Mà AB = A'B', B'F = \(\dfrac{1}{2}\) A'B'
Nên: EH = B'F (2)
(1)(2) suy ra: EHB'F là hình bình hành. Do đó: EF // B'H
Mà B'H thuộc (BCC'B')
Suy ra: EF // (BCC'B')
b) Gọi K là trung điểm AB
Dễ dàng chứng minh được FKBB' là hình bình hành
Ta có: FK // BB'
Mà BB' // CC'
Suy ra: FK // CC' (1)
Ta có: FK = BB', mà BB' = CC'
Do đó: FK = CC' (2)
(1)(2) suy ra FKCC' là hình bình hành
Mà hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường
Nên C'K cắt CF tại trung điểm của hai đường thẳng
mà C'K thuộc (AC'B) , CF cắt (AC'B) tại I (đề bài)
Do đó: I là trung điểm của CF.
Đáp án A.
Gọi K = B ' C ∩ B C ' và I là trung điểm của AB
Do H B ' = A I , H B ' / / A I ⇒ A H B ' I là hình bình hành ⇒ A H / / B ' I
Mặt khác K I / / A C ' nên A H C ' / / B ' C I ⇒ B ' C / / A H C '