K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

 

x4-3x2+6x+13=0

<=>x4-4x2+4+x2+6x+9=0

<=>(x2-2)2+(x-3)2=0

Ta thấy x2-2 khác x-3

=>PT vô nghiệm

10 tháng 1 2016

(x4-4x2+4)+(x2+6x+9)=0

(x2-4)2+(x+3)2=0

Vô nhiệm

 

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

14 tháng 2 2020

Ta có:

\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

Mà:

\(x^2+1>0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm

14 tháng 2 2020

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

29 tháng 1 2020

\(2x^2-6x+7=0\)

\(\Leftrightarrow2\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=0\)

\(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2+\frac{19}{4}=0\)

Mà : \(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)

Vậy phương trình vô nghiệm (đpcm)

13 tháng 1 2019

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)

\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)

Vậy phương trình vô nghiệm

p/s: mk ko bt cách trình bài => sai sót bỏ qua

4 tháng 9 2018

2 tháng 3 2015

...=x^4+x^3+x^2+5x^2+5x+5=x^(x^2+x+1)+5(x^2+x+1)=(x^2+5)(x^2+x+1)>0 (pt vô nghiệm)

23 tháng 2 2019

\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)

\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow x^2+x+1=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\left(l\right)\)

hay \(x^2+5=0\Leftrightarrow x^2=-5\left(l\right)\)

\(v...S=\varnothing\)

11 tháng 10 2018

Đáp án B