Tam giác ABC có A B = 5 , B C = 8 , C A = 6 . Gọi G là trọng tâm tam giác. Độ dài đoạn thẳng BG bằng bao nhiêu?
A. 6.
B. 142 3
C. 142 2
D. 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC=6/2=3cm
AH=căn 5^2-3^2=4cm
b: Gọi giao của BG với AC là M
=>M là trung điểm của AC
AG vuông góc BC
EC vuông góc BC
=>AG//CE
Xét ΔMAG và ΔMCE có
góc MAG=góc MCE
MA=MC
góc AMG=góc CME
=>ΔMAG=ΔMCE
=>AG=CE
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường trung tuyến
=>H là trung điểm của BC
=>HB=HC=3cm
=>AH=4cm
b: Ta có: AH là đường trung tuyến
mà AG là đường trung tuyến
và AH,AG có điểm chung là A
nên A,H,G thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
\(\widehat{BAG}=\widehat{CAG}\)
AG chung
Do đó: ΔABG=ΔACG
a) BD=BC/2=12/2=6
Vậy BC=6cm
Áp dụng định lý Py ta go vào tam giác vuông ABD, ta có:
\(AB^2+BD^2=AD^2\)
\(10^2+6^2=136\)
=> AD=\(\sqrt{136}\)
b) Tam giác ABC cân tại A, đường cao AD
=> AD là đường phân giác góc BAC (1)
Sau đó cm góc BG là tia pg góc HBD và CG là tia pg góc DCL cắt nhu tại G.
=> AG là pg góc BAC (2)
Từ (1) và (2) => AG và AD trùng nhau.
=>A, G, D thẳng hàng
Đáp án B