(x-3)(x+7)
5x-5y
x^2-11x
x^2-6x+9
x^2-121x^2-3x+5x-5y
x^2+2xy+y^2-64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f,\dfrac{x^2-6x+9}{x^2-8x+15}\\ =\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\\ =\dfrac{x-3}{x-5}\\ l,\dfrac{5xy+5x+3+3y}{10xy-15x-9+6y}\\ =\dfrac{5x\left(y+1\right)+3\left(y+1\right)}{5x\left(2y-3\right)+3\left(2y-3\right)}\\ =\dfrac{\left(y+1\right)\left(5x+3\right)}{\left(2y-3\right)\left(5y+3\right)}\\ =\dfrac{y+1}{2y-3}\)
6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)
7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)
8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)
9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)
10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)
6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )
7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )
8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )
9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )
10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )
do hơi bận nên mk ghi đáp án nha, ko hiểu đâu ib mk
a) \(3xy^2-2xy+12x=x\left(3y^2-2y+12\right)\)
b) \(x^3-10x^2+25x-16xy^2=x\left(x-4y-5\right)\left(x+4y-5\right)\)
c) \(5y^3-10xy^2+5x^2y-20y=5y\left(y-x-2\right)\left(y-x+2\right)\)
d) \(x^2+2xy+y^2-xz-yz=\left(x+y\right)\left(x+y-z\right)\)
e) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
f) \(8-12x+6x^2-x^3=\left(2-x\right)^3\)
g) \(125x^3-75x^2+15x-1=\left(5x-1\right)^3\)
h) \(x^2-xz-9y^2+3yz=\left(x-3y\right)\left(x+3y-z\right)\)
a) Ta có: \(5y^3-10xy^2+5yx^2-20y\)
\(=5y\left(y^2-2xy+x^2-4y\right)\)
b) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\cdot\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
c) Ta có: \(9x^2+y^2+6xy\)
\(=\left(3x\right)^2+2\cdot3x\cdot y+y^2\)
\(=\left(3x+y\right)^2\)
d) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
e) Ta có: \(125x^3-75x^2+15x-1\)
\(=\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot1+3\cdot5x\cdot1^2-1^3\)
\(=\left(5x-1\right)^3\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(5x-5y=5\left(x-y\right)\\ x^2-11x=x\left(x-11\right)\\ x^2-6x+9=\left(x-3\right)^2\\ x^2+2xy+y^2-64=\left(x+y\right)^2-64=\left(x+y+8\right)\left(x+y-8\right)\)
2 câu còn lại sai đề rồi
\(5x-5y=5\left(x-y\right)\)
\(x^2-11x=x\left(x-11\right)\)
\(x^2-6x+9=\left(x-3\right)^2\)
\(x^2+2xy+y^2-64=\left(x+y\right)^2-8^2=\left(x+y+8\right)\left(x+y-8\right)\)