Cho tam giác ABC cân tại A. Gọi M và N lần lượt là trung điểm của AB và ACA. Tứ giác MNCB là hình gì?Vì sao?
Anh chị giải dùm em đi ạ, em cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có MN là đường trung bình của tam giác ABC suy ra
MN//BC và MN=\(\dfrac{1}{2}\)BC
=> MN=BI
suy ra một tứ giác có một cạnh vừa song song vừa bằng nhau là hình bình hành suy ra MNIB là hình bình hành
b)
ta có MN//BC suy ra MNCB là hình thang ta lại có góc ABC= góc ACB 2 góc đấy của tam giác cân suy ra MNBC là hình thang cân
c)
ta có MI là đường trung bình của tam giác BAC suy ra MI//AC
ta có AMIC là hình thang
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
Mình ko vẽ hình đâu nha
Ta có : Góc MAB = góc ABC ( vì MN // BC)
Góc NAC = góc ACB ( vì MN // BC )
Mà góc ABC= góc ACB ( Tam giác ABC cân )
Nên góc MAB=góc NAC
Xét tam giác ABM và tam giác ACN có
AB=AC ( vì tam giác ABC cân tại A )
Góc MAB= góc NAC ( cmt)
MA= NA ( vì A là tđ cuả MN )
Nên tam giác ABM = ACN
BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)
Nên MNCB là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(NM=\dfrac{BC}{2}=3.5\left(cm\right)\)
Tứ giác MNCB là hình thang vì:
M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình
=> MN//AB
em cảm ơn